Applications of machine learning in time-domain fluorescence lifetime imaging: a review

Many medical imaging modalities have benefited from recent advances in Machine Learning (ML), specifically in deep learning, such as neural networks. Computers can be trained to investigate and enhance medical imaging methods without using valuable human resources. In recent years, Fluorescence Life...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods and applications in fluorescence 2024-02, Vol.12 (2), p.22001
Hauptverfasser: Gouzou, Dorian, Taimori, Ali, Haloubi, Tarek, Finlayson, Neil, Wang, Qiang, Hopgood, James R, Vallejo, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 22001
container_title Methods and applications in fluorescence
container_volume 12
creator Gouzou, Dorian
Taimori, Ali
Haloubi, Tarek
Finlayson, Neil
Wang, Qiang
Hopgood, James R
Vallejo, Marta
description Many medical imaging modalities have benefited from recent advances in Machine Learning (ML), specifically in deep learning, such as neural networks. Computers can be trained to investigate and enhance medical imaging methods without using valuable human resources. In recent years, Fluorescence Lifetime Imaging (FLIm) has received increasing attention from the ML community. FLIm goes beyond conventional spectral imaging, providing additional lifetime information, and could lead to optical histopathology supporting real-time diagnostics. However, most current studies do not use the full potential of machine/deep learning models. As a developing image modality, FLIm data are not easily obtainable, which, coupled with an absence of standardisation, is pushing back the research to develop models which could advance automated diagnosis and help promote FLIm. In this paper, we describe recent developments that improve FLIm image quality, specifically time-domain systems, and we summarise sensing, signal-to-noise analysis and the advances in registration and low-level tracking. We review the two main applications of ML for FLIm: lifetime estimation and image analysis through classification and segmentation. We suggest a course of action to improve the quality of ML studies applied to FLIm. Our final goal is to promote FLIm and attract more ML practitioners to explore the potential of lifetime imaging.
doi_str_mv 10.1088/2050-6120/ad12f7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2050_6120_ad12f7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899371126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-79192f3551dee6bcf3d9179e4e40937797be7742bc87cf83145efe34d22ba2933</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoKurelXSnC6t5tE3jRkR8geBGcRnS9GaMtElN2hH_vRlGBwUxm4Tc756cnIvQPsEnBNf1KcUlzitC8alqCTV8DW2vrtZ_nLfQXoyvOC1REFoWm2iL1bgshai30fPFMHRWq9F6FzNvsl7pF-sg60AFZ90ssy4bbQ9563uVzqabfICowekEWQOLYmZ7NUvwWaayAHML77tow6guwt7XvoOerq8eL2_z-4ebu8uL-1wXVTXmXBBBDStL0gJUjTasFYQLKKDAgnEueAOcF7TRNdemZqQowQArWkobRQVjO-h8qTtMTQ9tsjUG1ckhJEfhQ3pl5e-Ksy9y5ucyRVgSxnhSOPpSCP5tgjjK3qbvdZ1y4KcoaS2SE0JolVC8RHXwMQYwq3cIXgjWchG6XIQulzNJLQc__a0avieQgOMlYP0gX_0UXIrrP73DP_BeGUmopBJTijGRQ2vYJ3KMo18</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899371126</pqid></control><display><type>article</type><title>Applications of machine learning in time-domain fluorescence lifetime imaging: a review</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gouzou, Dorian ; Taimori, Ali ; Haloubi, Tarek ; Finlayson, Neil ; Wang, Qiang ; Hopgood, James R ; Vallejo, Marta</creator><creatorcontrib>Gouzou, Dorian ; Taimori, Ali ; Haloubi, Tarek ; Finlayson, Neil ; Wang, Qiang ; Hopgood, James R ; Vallejo, Marta</creatorcontrib><description>Many medical imaging modalities have benefited from recent advances in Machine Learning (ML), specifically in deep learning, such as neural networks. Computers can be trained to investigate and enhance medical imaging methods without using valuable human resources. In recent years, Fluorescence Lifetime Imaging (FLIm) has received increasing attention from the ML community. FLIm goes beyond conventional spectral imaging, providing additional lifetime information, and could lead to optical histopathology supporting real-time diagnostics. However, most current studies do not use the full potential of machine/deep learning models. As a developing image modality, FLIm data are not easily obtainable, which, coupled with an absence of standardisation, is pushing back the research to develop models which could advance automated diagnosis and help promote FLIm. In this paper, we describe recent developments that improve FLIm image quality, specifically time-domain systems, and we summarise sensing, signal-to-noise analysis and the advances in registration and low-level tracking. We review the two main applications of ML for FLIm: lifetime estimation and image analysis through classification and segmentation. We suggest a course of action to improve the quality of ML studies applied to FLIm. Our final goal is to promote FLIm and attract more ML practitioners to explore the potential of lifetime imaging.</description><identifier>ISSN: 2050-6120</identifier><identifier>EISSN: 2050-6120</identifier><identifier>DOI: 10.1088/2050-6120/ad12f7</identifier><identifier>PMID: 38055998</identifier><identifier>CODEN: MAFEB2</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>biomedical engineering ; deep learning ; FLIm ; fluorescence lifetime imaging ; machine learning ; Topical Review</subject><ispartof>Methods and applications in fluorescence, 2024-02, Vol.12 (2), p.22001</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-79192f3551dee6bcf3d9179e4e40937797be7742bc87cf83145efe34d22ba2933</citedby><cites>FETCH-LOGICAL-c466t-79192f3551dee6bcf3d9179e4e40937797be7742bc87cf83145efe34d22ba2933</cites><orcidid>0000-0002-3029-2425 ; 0000-0001-9957-954X ; 0000-0001-9550-7434 ; 0000-0003-1598-9563 ; 0000-0003-4111-1252 ; 0000-0002-1665-7408 ; 0000-0003-4865-7784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2050-6120/ad12f7/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38055998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouzou, Dorian</creatorcontrib><creatorcontrib>Taimori, Ali</creatorcontrib><creatorcontrib>Haloubi, Tarek</creatorcontrib><creatorcontrib>Finlayson, Neil</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Hopgood, James R</creatorcontrib><creatorcontrib>Vallejo, Marta</creatorcontrib><title>Applications of machine learning in time-domain fluorescence lifetime imaging: a review</title><title>Methods and applications in fluorescence</title><addtitle>MAF</addtitle><addtitle>Methods Appl. Fluoresc</addtitle><description>Many medical imaging modalities have benefited from recent advances in Machine Learning (ML), specifically in deep learning, such as neural networks. Computers can be trained to investigate and enhance medical imaging methods without using valuable human resources. In recent years, Fluorescence Lifetime Imaging (FLIm) has received increasing attention from the ML community. FLIm goes beyond conventional spectral imaging, providing additional lifetime information, and could lead to optical histopathology supporting real-time diagnostics. However, most current studies do not use the full potential of machine/deep learning models. As a developing image modality, FLIm data are not easily obtainable, which, coupled with an absence of standardisation, is pushing back the research to develop models which could advance automated diagnosis and help promote FLIm. In this paper, we describe recent developments that improve FLIm image quality, specifically time-domain systems, and we summarise sensing, signal-to-noise analysis and the advances in registration and low-level tracking. We review the two main applications of ML for FLIm: lifetime estimation and image analysis through classification and segmentation. We suggest a course of action to improve the quality of ML studies applied to FLIm. Our final goal is to promote FLIm and attract more ML practitioners to explore the potential of lifetime imaging.</description><subject>biomedical engineering</subject><subject>deep learning</subject><subject>FLIm</subject><subject>fluorescence lifetime imaging</subject><subject>machine learning</subject><subject>Topical Review</subject><issn>2050-6120</issn><issn>2050-6120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMoKurelXSnC6t5tE3jRkR8geBGcRnS9GaMtElN2hH_vRlGBwUxm4Tc756cnIvQPsEnBNf1KcUlzitC8alqCTV8DW2vrtZ_nLfQXoyvOC1REFoWm2iL1bgshai30fPFMHRWq9F6FzNvsl7pF-sg60AFZ90ssy4bbQ9563uVzqabfICowekEWQOLYmZ7NUvwWaayAHML77tow6guwt7XvoOerq8eL2_z-4ebu8uL-1wXVTXmXBBBDStL0gJUjTasFYQLKKDAgnEueAOcF7TRNdemZqQowQArWkobRQVjO-h8qTtMTQ9tsjUG1ckhJEfhQ3pl5e-Ksy9y5ucyRVgSxnhSOPpSCP5tgjjK3qbvdZ1y4KcoaS2SE0JolVC8RHXwMQYwq3cIXgjWchG6XIQulzNJLQc__a0avieQgOMlYP0gX_0UXIrrP73DP_BeGUmopBJTijGRQ2vYJ3KMo18</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Gouzou, Dorian</creator><creator>Taimori, Ali</creator><creator>Haloubi, Tarek</creator><creator>Finlayson, Neil</creator><creator>Wang, Qiang</creator><creator>Hopgood, James R</creator><creator>Vallejo, Marta</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3029-2425</orcidid><orcidid>https://orcid.org/0000-0001-9957-954X</orcidid><orcidid>https://orcid.org/0000-0001-9550-7434</orcidid><orcidid>https://orcid.org/0000-0003-1598-9563</orcidid><orcidid>https://orcid.org/0000-0003-4111-1252</orcidid><orcidid>https://orcid.org/0000-0002-1665-7408</orcidid><orcidid>https://orcid.org/0000-0003-4865-7784</orcidid></search><sort><creationdate>20240208</creationdate><title>Applications of machine learning in time-domain fluorescence lifetime imaging: a review</title><author>Gouzou, Dorian ; Taimori, Ali ; Haloubi, Tarek ; Finlayson, Neil ; Wang, Qiang ; Hopgood, James R ; Vallejo, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-79192f3551dee6bcf3d9179e4e40937797be7742bc87cf83145efe34d22ba2933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biomedical engineering</topic><topic>deep learning</topic><topic>FLIm</topic><topic>fluorescence lifetime imaging</topic><topic>machine learning</topic><topic>Topical Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouzou, Dorian</creatorcontrib><creatorcontrib>Taimori, Ali</creatorcontrib><creatorcontrib>Haloubi, Tarek</creatorcontrib><creatorcontrib>Finlayson, Neil</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Hopgood, James R</creatorcontrib><creatorcontrib>Vallejo, Marta</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods and applications in fluorescence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouzou, Dorian</au><au>Taimori, Ali</au><au>Haloubi, Tarek</au><au>Finlayson, Neil</au><au>Wang, Qiang</au><au>Hopgood, James R</au><au>Vallejo, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of machine learning in time-domain fluorescence lifetime imaging: a review</atitle><jtitle>Methods and applications in fluorescence</jtitle><stitle>MAF</stitle><addtitle>Methods Appl. Fluoresc</addtitle><date>2024-02-08</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>22001</spage><pages>22001-</pages><issn>2050-6120</issn><eissn>2050-6120</eissn><coden>MAFEB2</coden><abstract>Many medical imaging modalities have benefited from recent advances in Machine Learning (ML), specifically in deep learning, such as neural networks. Computers can be trained to investigate and enhance medical imaging methods without using valuable human resources. In recent years, Fluorescence Lifetime Imaging (FLIm) has received increasing attention from the ML community. FLIm goes beyond conventional spectral imaging, providing additional lifetime information, and could lead to optical histopathology supporting real-time diagnostics. However, most current studies do not use the full potential of machine/deep learning models. As a developing image modality, FLIm data are not easily obtainable, which, coupled with an absence of standardisation, is pushing back the research to develop models which could advance automated diagnosis and help promote FLIm. In this paper, we describe recent developments that improve FLIm image quality, specifically time-domain systems, and we summarise sensing, signal-to-noise analysis and the advances in registration and low-level tracking. We review the two main applications of ML for FLIm: lifetime estimation and image analysis through classification and segmentation. We suggest a course of action to improve the quality of ML studies applied to FLIm. Our final goal is to promote FLIm and attract more ML practitioners to explore the potential of lifetime imaging.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38055998</pmid><doi>10.1088/2050-6120/ad12f7</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-3029-2425</orcidid><orcidid>https://orcid.org/0000-0001-9957-954X</orcidid><orcidid>https://orcid.org/0000-0001-9550-7434</orcidid><orcidid>https://orcid.org/0000-0003-1598-9563</orcidid><orcidid>https://orcid.org/0000-0003-4111-1252</orcidid><orcidid>https://orcid.org/0000-0002-1665-7408</orcidid><orcidid>https://orcid.org/0000-0003-4865-7784</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-6120
ispartof Methods and applications in fluorescence, 2024-02, Vol.12 (2), p.22001
issn 2050-6120
2050-6120
language eng
recordid cdi_crossref_primary_10_1088_2050_6120_ad12f7
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects biomedical engineering
deep learning
FLIm
fluorescence lifetime imaging
machine learning
Topical Review
title Applications of machine learning in time-domain fluorescence lifetime imaging: a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20machine%20learning%20in%20time-domain%20fluorescence%20lifetime%20imaging:%20a%20review&rft.jtitle=Methods%20and%20applications%20in%20fluorescence&rft.au=Gouzou,%20Dorian&rft.date=2024-02-08&rft.volume=12&rft.issue=2&rft.spage=22001&rft.pages=22001-&rft.issn=2050-6120&rft.eissn=2050-6120&rft.coden=MAFEB2&rft_id=info:doi/10.1088/2050-6120/ad12f7&rft_dat=%3Cproquest_cross%3E2899371126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899371126&rft_id=info:pmid/38055998&rfr_iscdi=true