3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration
The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of h...
Gespeichert in:
Veröffentlicht in: | Biofabrication 2022-07, Vol.14 (3), p.35008 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35008 |
container_title | Biofabrication |
container_volume | 14 |
creator | Sun, Xin Jiao, Xin Yang, Xue Ma, Jie Wang, Tianchang Jin, Wenjie Li, Wentao Yang, Han Mao, Yuanqing Gan, Yaokai Zhou, Xiaojun Li, Tao Li, Shuai Chen, Xiaodong Wang, Jinwu |
description | The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells and bone morphogenetic protein-4. Subsequently, endothelial progenitor cells were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesis
and prompted the new blood vessels and new bone formation
. In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration. |
doi_str_mv | 10.1088/1758-5090/ac6700 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1758_5090_ac6700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650252047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-10e0aff10d5c761994991f3c9c69762611d36b8707fbb0f86b4ba2b7c96d519f3</originalsourceid><addsrcrecordid>eNp1kE1PJCEQholx4_fdk-FkPGyvRXcDzdG47kdispf1TIAGB9MNI9Bu1l-_TEbntJ6KVJ63inoQOifwhcAwXBNOh4aCgGtlGAfYQ0e71v7uPbSH6DjnJwBGKSMH6LCjPeEC2iNUuq9Y-7hOPhQfHnF0OOZiY2hmP9viDc5GORenMeM_vqzwytukkll5oyY8e5OiWakQ7JSxiwm_qGyWSSX_akesY7C4-JwXi5N9tKFGi4_hFH1yasr27K2eoIdvd79vfzT3v77_vL25b0zHeGkIWKi7CYzUcEaE6IUgrjPCMMFZywgZO6YHDtxpDW5guteq1dwINlIiXHeCrrZz1yk-LzYXOfts7DSpYOOSZcsotLSFnlcUtmg9KOdknaxKZpX-SgJy41puZMqNWLl1XSMXb9MXPdtxF3iXW4HLLVD9yqe4pFCPldpJ0stOQkcBBrkeN__8_B_ww8X_AGKUllc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650252047</pqid></control><display><type>article</type><title>3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sun, Xin ; Jiao, Xin ; Yang, Xue ; Ma, Jie ; Wang, Tianchang ; Jin, Wenjie ; Li, Wentao ; Yang, Han ; Mao, Yuanqing ; Gan, Yaokai ; Zhou, Xiaojun ; Li, Tao ; Li, Shuai ; Chen, Xiaodong ; Wang, Jinwu</creator><creatorcontrib>Sun, Xin ; Jiao, Xin ; Yang, Xue ; Ma, Jie ; Wang, Tianchang ; Jin, Wenjie ; Li, Wentao ; Yang, Han ; Mao, Yuanqing ; Gan, Yaokai ; Zhou, Xiaojun ; Li, Tao ; Li, Shuai ; Chen, Xiaodong ; Wang, Jinwu</creatorcontrib><description>The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells and bone morphogenetic protein-4. Subsequently, endothelial progenitor cells were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesis
and prompted the new blood vessels and new bone formation
. In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration.</description><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/ac6700</identifier><identifier>PMID: 35417902</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>3D bioprinting ; Biomimetics ; Bioprinting - methods ; bone defect repair ; Bone Regeneration ; Haversian System ; hierarchical microchannels ; Osteogenesis ; osteon-mimetic scaffolds ; Printing, Three-Dimensional ; Tissue Engineering ; Tissue Scaffolds - chemistry ; vascularized bone regeneration</subject><ispartof>Biofabrication, 2022-07, Vol.14 (3), p.35008</ispartof><rights>2022 IOP Publishing Ltd</rights><rights>2022 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-10e0aff10d5c761994991f3c9c69762611d36b8707fbb0f86b4ba2b7c96d519f3</citedby><cites>FETCH-LOGICAL-c367t-10e0aff10d5c761994991f3c9c69762611d36b8707fbb0f86b4ba2b7c96d519f3</cites><orcidid>0000-0003-1411-057X ; 0000-0001-6722-017X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1758-5090/ac6700/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35417902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Jiao, Xin</creatorcontrib><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Wang, Tianchang</creatorcontrib><creatorcontrib>Jin, Wenjie</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Mao, Yuanqing</creatorcontrib><creatorcontrib>Gan, Yaokai</creatorcontrib><creatorcontrib>Zhou, Xiaojun</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Wang, Jinwu</creatorcontrib><title>3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells and bone morphogenetic protein-4. Subsequently, endothelial progenitor cells were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesis
and prompted the new blood vessels and new bone formation
. In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration.</description><subject>3D bioprinting</subject><subject>Biomimetics</subject><subject>Bioprinting - methods</subject><subject>bone defect repair</subject><subject>Bone Regeneration</subject><subject>Haversian System</subject><subject>hierarchical microchannels</subject><subject>Osteogenesis</subject><subject>osteon-mimetic scaffolds</subject><subject>Printing, Three-Dimensional</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>vascularized bone regeneration</subject><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PJCEQholx4_fdk-FkPGyvRXcDzdG47kdispf1TIAGB9MNI9Bu1l-_TEbntJ6KVJ63inoQOifwhcAwXBNOh4aCgGtlGAfYQ0e71v7uPbSH6DjnJwBGKSMH6LCjPeEC2iNUuq9Y-7hOPhQfHnF0OOZiY2hmP9viDc5GORenMeM_vqzwytukkll5oyY8e5OiWakQ7JSxiwm_qGyWSSX_akesY7C4-JwXi5N9tKFGi4_hFH1yasr27K2eoIdvd79vfzT3v77_vL25b0zHeGkIWKi7CYzUcEaE6IUgrjPCMMFZywgZO6YHDtxpDW5guteq1dwINlIiXHeCrrZz1yk-LzYXOfts7DSpYOOSZcsotLSFnlcUtmg9KOdknaxKZpX-SgJy41puZMqNWLl1XSMXb9MXPdtxF3iXW4HLLVD9yqe4pFCPldpJ0stOQkcBBrkeN__8_B_ww8X_AGKUllc</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Sun, Xin</creator><creator>Jiao, Xin</creator><creator>Yang, Xue</creator><creator>Ma, Jie</creator><creator>Wang, Tianchang</creator><creator>Jin, Wenjie</creator><creator>Li, Wentao</creator><creator>Yang, Han</creator><creator>Mao, Yuanqing</creator><creator>Gan, Yaokai</creator><creator>Zhou, Xiaojun</creator><creator>Li, Tao</creator><creator>Li, Shuai</creator><creator>Chen, Xiaodong</creator><creator>Wang, Jinwu</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1411-057X</orcidid><orcidid>https://orcid.org/0000-0001-6722-017X</orcidid></search><sort><creationdate>20220701</creationdate><title>3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration</title><author>Sun, Xin ; Jiao, Xin ; Yang, Xue ; Ma, Jie ; Wang, Tianchang ; Jin, Wenjie ; Li, Wentao ; Yang, Han ; Mao, Yuanqing ; Gan, Yaokai ; Zhou, Xiaojun ; Li, Tao ; Li, Shuai ; Chen, Xiaodong ; Wang, Jinwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-10e0aff10d5c761994991f3c9c69762611d36b8707fbb0f86b4ba2b7c96d519f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D bioprinting</topic><topic>Biomimetics</topic><topic>Bioprinting - methods</topic><topic>bone defect repair</topic><topic>Bone Regeneration</topic><topic>Haversian System</topic><topic>hierarchical microchannels</topic><topic>Osteogenesis</topic><topic>osteon-mimetic scaffolds</topic><topic>Printing, Three-Dimensional</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>vascularized bone regeneration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Jiao, Xin</creatorcontrib><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Wang, Tianchang</creatorcontrib><creatorcontrib>Jin, Wenjie</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Mao, Yuanqing</creatorcontrib><creatorcontrib>Gan, Yaokai</creatorcontrib><creatorcontrib>Zhou, Xiaojun</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Wang, Jinwu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xin</au><au>Jiao, Xin</au><au>Yang, Xue</au><au>Ma, Jie</au><au>Wang, Tianchang</au><au>Jin, Wenjie</au><au>Li, Wentao</au><au>Yang, Han</au><au>Mao, Yuanqing</au><au>Gan, Yaokai</au><au>Zhou, Xiaojun</au><au>Li, Tao</au><au>Li, Shuai</au><au>Chen, Xiaodong</au><au>Wang, Jinwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>35008</spage><pages>35008-</pages><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells and bone morphogenetic protein-4. Subsequently, endothelial progenitor cells were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesis
and prompted the new blood vessels and new bone formation
. In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>35417902</pmid><doi>10.1088/1758-5090/ac6700</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1411-057X</orcidid><orcidid>https://orcid.org/0000-0001-6722-017X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-5082 |
ispartof | Biofabrication, 2022-07, Vol.14 (3), p.35008 |
issn | 1758-5082 1758-5090 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1758_5090_ac6700 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 3D bioprinting Biomimetics Bioprinting - methods bone defect repair Bone Regeneration Haversian System hierarchical microchannels Osteogenesis osteon-mimetic scaffolds Printing, Three-Dimensional Tissue Engineering Tissue Scaffolds - chemistry vascularized bone regeneration |
title | 3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20bioprinting%20of%20osteon-mimetic%20scaffolds%20with%20hierarchical%20microchannels%20for%20vascularized%20bone%20tissue%20regeneration&rft.jtitle=Biofabrication&rft.au=Sun,%20Xin&rft.date=2022-07-01&rft.volume=14&rft.issue=3&rft.spage=35008&rft.pages=35008-&rft.issn=1758-5082&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/ac6700&rft_dat=%3Cproquest_cross%3E2650252047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650252047&rft_id=info:pmid/35417902&rfr_iscdi=true |