3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration

The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofabrication 2022-07, Vol.14 (3), p.35008
Hauptverfasser: Sun, Xin, Jiao, Xin, Yang, Xue, Ma, Jie, Wang, Tianchang, Jin, Wenjie, Li, Wentao, Yang, Han, Mao, Yuanqing, Gan, Yaokai, Zhou, Xiaojun, Li, Tao, Li, Shuai, Chen, Xiaodong, Wang, Jinwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35008
container_title Biofabrication
container_volume 14
creator Sun, Xin
Jiao, Xin
Yang, Xue
Ma, Jie
Wang, Tianchang
Jin, Wenjie
Li, Wentao
Yang, Han
Mao, Yuanqing
Gan, Yaokai
Zhou, Xiaojun
Li, Tao
Li, Shuai
Chen, Xiaodong
Wang, Jinwu
description The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells and bone morphogenetic protein-4. Subsequently, endothelial progenitor cells were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesis and prompted the new blood vessels and new bone formation . In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration.
doi_str_mv 10.1088/1758-5090/ac6700
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1758_5090_ac6700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650252047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-10e0aff10d5c761994991f3c9c69762611d36b8707fbb0f86b4ba2b7c96d519f3</originalsourceid><addsrcrecordid>eNp1kE1PJCEQholx4_fdk-FkPGyvRXcDzdG47kdispf1TIAGB9MNI9Bu1l-_TEbntJ6KVJ63inoQOifwhcAwXBNOh4aCgGtlGAfYQ0e71v7uPbSH6DjnJwBGKSMH6LCjPeEC2iNUuq9Y-7hOPhQfHnF0OOZiY2hmP9viDc5GORenMeM_vqzwytukkll5oyY8e5OiWakQ7JSxiwm_qGyWSSX_akesY7C4-JwXi5N9tKFGi4_hFH1yasr27K2eoIdvd79vfzT3v77_vL25b0zHeGkIWKi7CYzUcEaE6IUgrjPCMMFZywgZO6YHDtxpDW5guteq1dwINlIiXHeCrrZz1yk-LzYXOfts7DSpYOOSZcsotLSFnlcUtmg9KOdknaxKZpX-SgJy41puZMqNWLl1XSMXb9MXPdtxF3iXW4HLLVD9yqe4pFCPldpJ0stOQkcBBrkeN__8_B_ww8X_AGKUllc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650252047</pqid></control><display><type>article</type><title>3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sun, Xin ; Jiao, Xin ; Yang, Xue ; Ma, Jie ; Wang, Tianchang ; Jin, Wenjie ; Li, Wentao ; Yang, Han ; Mao, Yuanqing ; Gan, Yaokai ; Zhou, Xiaojun ; Li, Tao ; Li, Shuai ; Chen, Xiaodong ; Wang, Jinwu</creator><creatorcontrib>Sun, Xin ; Jiao, Xin ; Yang, Xue ; Ma, Jie ; Wang, Tianchang ; Jin, Wenjie ; Li, Wentao ; Yang, Han ; Mao, Yuanqing ; Gan, Yaokai ; Zhou, Xiaojun ; Li, Tao ; Li, Shuai ; Chen, Xiaodong ; Wang, Jinwu</creatorcontrib><description>The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells and bone morphogenetic protein-4. Subsequently, endothelial progenitor cells were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesis and prompted the new blood vessels and new bone formation . In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration.</description><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/ac6700</identifier><identifier>PMID: 35417902</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>3D bioprinting ; Biomimetics ; Bioprinting - methods ; bone defect repair ; Bone Regeneration ; Haversian System ; hierarchical microchannels ; Osteogenesis ; osteon-mimetic scaffolds ; Printing, Three-Dimensional ; Tissue Engineering ; Tissue Scaffolds - chemistry ; vascularized bone regeneration</subject><ispartof>Biofabrication, 2022-07, Vol.14 (3), p.35008</ispartof><rights>2022 IOP Publishing Ltd</rights><rights>2022 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-10e0aff10d5c761994991f3c9c69762611d36b8707fbb0f86b4ba2b7c96d519f3</citedby><cites>FETCH-LOGICAL-c367t-10e0aff10d5c761994991f3c9c69762611d36b8707fbb0f86b4ba2b7c96d519f3</cites><orcidid>0000-0003-1411-057X ; 0000-0001-6722-017X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1758-5090/ac6700/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35417902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Jiao, Xin</creatorcontrib><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Wang, Tianchang</creatorcontrib><creatorcontrib>Jin, Wenjie</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Mao, Yuanqing</creatorcontrib><creatorcontrib>Gan, Yaokai</creatorcontrib><creatorcontrib>Zhou, Xiaojun</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Wang, Jinwu</creatorcontrib><title>3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells and bone morphogenetic protein-4. Subsequently, endothelial progenitor cells were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesis and prompted the new blood vessels and new bone formation . In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration.</description><subject>3D bioprinting</subject><subject>Biomimetics</subject><subject>Bioprinting - methods</subject><subject>bone defect repair</subject><subject>Bone Regeneration</subject><subject>Haversian System</subject><subject>hierarchical microchannels</subject><subject>Osteogenesis</subject><subject>osteon-mimetic scaffolds</subject><subject>Printing, Three-Dimensional</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>vascularized bone regeneration</subject><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PJCEQholx4_fdk-FkPGyvRXcDzdG47kdispf1TIAGB9MNI9Bu1l-_TEbntJ6KVJ63inoQOifwhcAwXBNOh4aCgGtlGAfYQ0e71v7uPbSH6DjnJwBGKSMH6LCjPeEC2iNUuq9Y-7hOPhQfHnF0OOZiY2hmP9viDc5GORenMeM_vqzwytukkll5oyY8e5OiWakQ7JSxiwm_qGyWSSX_akesY7C4-JwXi5N9tKFGi4_hFH1yasr27K2eoIdvd79vfzT3v77_vL25b0zHeGkIWKi7CYzUcEaE6IUgrjPCMMFZywgZO6YHDtxpDW5guteq1dwINlIiXHeCrrZz1yk-LzYXOfts7DSpYOOSZcsotLSFnlcUtmg9KOdknaxKZpX-SgJy41puZMqNWLl1XSMXb9MXPdtxF3iXW4HLLVD9yqe4pFCPldpJ0stOQkcBBrkeN__8_B_ww8X_AGKUllc</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Sun, Xin</creator><creator>Jiao, Xin</creator><creator>Yang, Xue</creator><creator>Ma, Jie</creator><creator>Wang, Tianchang</creator><creator>Jin, Wenjie</creator><creator>Li, Wentao</creator><creator>Yang, Han</creator><creator>Mao, Yuanqing</creator><creator>Gan, Yaokai</creator><creator>Zhou, Xiaojun</creator><creator>Li, Tao</creator><creator>Li, Shuai</creator><creator>Chen, Xiaodong</creator><creator>Wang, Jinwu</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1411-057X</orcidid><orcidid>https://orcid.org/0000-0001-6722-017X</orcidid></search><sort><creationdate>20220701</creationdate><title>3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration</title><author>Sun, Xin ; Jiao, Xin ; Yang, Xue ; Ma, Jie ; Wang, Tianchang ; Jin, Wenjie ; Li, Wentao ; Yang, Han ; Mao, Yuanqing ; Gan, Yaokai ; Zhou, Xiaojun ; Li, Tao ; Li, Shuai ; Chen, Xiaodong ; Wang, Jinwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-10e0aff10d5c761994991f3c9c69762611d36b8707fbb0f86b4ba2b7c96d519f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D bioprinting</topic><topic>Biomimetics</topic><topic>Bioprinting - methods</topic><topic>bone defect repair</topic><topic>Bone Regeneration</topic><topic>Haversian System</topic><topic>hierarchical microchannels</topic><topic>Osteogenesis</topic><topic>osteon-mimetic scaffolds</topic><topic>Printing, Three-Dimensional</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>vascularized bone regeneration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Jiao, Xin</creatorcontrib><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Wang, Tianchang</creatorcontrib><creatorcontrib>Jin, Wenjie</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Mao, Yuanqing</creatorcontrib><creatorcontrib>Gan, Yaokai</creatorcontrib><creatorcontrib>Zhou, Xiaojun</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Wang, Jinwu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xin</au><au>Jiao, Xin</au><au>Yang, Xue</au><au>Ma, Jie</au><au>Wang, Tianchang</au><au>Jin, Wenjie</au><au>Li, Wentao</au><au>Yang, Han</au><au>Mao, Yuanqing</au><au>Gan, Yaokai</au><au>Zhou, Xiaojun</au><au>Li, Tao</au><au>Li, Shuai</au><au>Chen, Xiaodong</au><au>Wang, Jinwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>35008</spage><pages>35008-</pages><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>The integration of three-dimensional (3D) bioprinted scaffold's structure and function for critical-size bone defect repair is of immense significance. Inspired by the basic component of innate cortical bone tissue-osteons, many studies focus on biomimetic strategy. However, the complexity of hierarchical microchannels in the osteon, the requirement of mechanical strength of bone, and the biological function of angiogenesis and osteogenesis remain challenges in the fabrication of osteon-mimetic scaffolds. Therefore, we successfully built mimetic scaffolds with vertically central medullary canals, peripheral Haversian canals, and transverse Volkmann canals structures simultaneously by 3D bioprinting technology using polycaprolactone and bioink loading with bone marrow mesenchymal stem cells and bone morphogenetic protein-4. Subsequently, endothelial progenitor cells were seeded into the canals to enhance angiogenesis. The porosity and compressive properties of bioprinted scaffolds could be well controlled by altering the structure and canal numbers of the scaffolds. The osteon-mimetic scaffolds showed satisfactory biocompatibility and promotion of angiogenesis and osteogenesis and prompted the new blood vessels and new bone formation . In summary, this study proposes a biomimetic strategy for fabricating structured and functionalized 3D bioprinted scaffolds for vascularized bone tissue regeneration.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>35417902</pmid><doi>10.1088/1758-5090/ac6700</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1411-057X</orcidid><orcidid>https://orcid.org/0000-0001-6722-017X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1758-5082
ispartof Biofabrication, 2022-07, Vol.14 (3), p.35008
issn 1758-5082
1758-5090
language eng
recordid cdi_crossref_primary_10_1088_1758_5090_ac6700
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 3D bioprinting
Biomimetics
Bioprinting - methods
bone defect repair
Bone Regeneration
Haversian System
hierarchical microchannels
Osteogenesis
osteon-mimetic scaffolds
Printing, Three-Dimensional
Tissue Engineering
Tissue Scaffolds - chemistry
vascularized bone regeneration
title 3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20bioprinting%20of%20osteon-mimetic%20scaffolds%20with%20hierarchical%20microchannels%20for%20vascularized%20bone%20tissue%20regeneration&rft.jtitle=Biofabrication&rft.au=Sun,%20Xin&rft.date=2022-07-01&rft.volume=14&rft.issue=3&rft.spage=35008&rft.pages=35008-&rft.issn=1758-5082&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/ac6700&rft_dat=%3Cproquest_cross%3E2650252047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650252047&rft_id=info:pmid/35417902&rfr_iscdi=true