Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow

Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofabrication 2022-01, Vol.14 (2), p.25007
Hauptverfasser: Lee, Gi-hun, Huang, Stephanie A, Aw, Wen Y, Rathod, Mitesh L, Cho, Crescentia, Ligler, Frances S, Polacheck, William J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25007
container_title Biofabrication
container_volume 14
creator Lee, Gi-hun
Huang, Stephanie A
Aw, Wen Y
Rathod, Mitesh L
Cho, Crescentia
Ligler, Frances S
Polacheck, William J
description Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MμLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.
doi_str_mv 10.1088/1758-5090/ac48e5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1758_5090_ac48e5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618228165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-f83657cde8e2e7a9aeff5fda220eb9dd7d570913cdb89c070f275877573bed643</originalsourceid><addsrcrecordid>eNp9kctrFTEUxoNY7Mu9K8lKXPS2SWbymI0gxT6gpRvdFUImD5uSmYx5VO5_by63vSgUN8kh-c4vJ98HwAeMTjES4gxzKlYUDehM6V5Y-gYc7I7e7mpB9sFhzo8IMUoZfgf2u34YGoAcgPvbGooPam0TnLxO0YXqjddwCaq4mCbYFlgeLMylmjWMDoY6-VmFE1iSmvNU06ZWs4F-Ljbl4otXAboQfx-DPadCtu-f9yPw4-Lb9_Or1c3d5fX515uV7llfVk50jHJtrLDEcjUo6xx1RhGC7DgYww3laMCdNqMYNOLIkfYxzinvRmtY3x2BL1vuUsfJGm3nNlqQS_KTSmsZlZf_3sz-Qf6MT1IIxvuBNcDnZ0CKv6rNRU4-axuCmm2sWRKGBSECM9qkaCttXuWcrNs9g5HchCI3rstNAnIbSmv5-Pd4u4aXFJrgZCvwcZGPsaZmb_4f79Mr8tFJ3EsiEaEIcbkY1_0BiH-mBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618228165</pqid></control><display><type>article</type><title>Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Lee, Gi-hun ; Huang, Stephanie A ; Aw, Wen Y ; Rathod, Mitesh L ; Cho, Crescentia ; Ligler, Frances S ; Polacheck, William J</creator><creatorcontrib>Lee, Gi-hun ; Huang, Stephanie A ; Aw, Wen Y ; Rathod, Mitesh L ; Cho, Crescentia ; Ligler, Frances S ; Polacheck, William J</creatorcontrib><description>Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MμLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.</description><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/ac48e5</identifier><identifier>PMID: 34991082</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>biofluid mechanics ; hemodynamics ; interstitial flow ; Lymphatic Vessels ; mechanotransduction ; microfluidics ; Microfluidics - methods ; Stress, Mechanical ; vascular biology</subject><ispartof>Biofabrication, 2022-01, Vol.14 (2), p.25007</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-f83657cde8e2e7a9aeff5fda220eb9dd7d570913cdb89c070f275877573bed643</citedby><cites>FETCH-LOGICAL-c464t-f83657cde8e2e7a9aeff5fda220eb9dd7d570913cdb89c070f275877573bed643</cites><orcidid>0000-0003-2466-9174 ; 0000-0003-4909-2084 ; 0000-0003-2728-0746 ; 0000-0003-4753-802X ; 0000-0003-1315-612X ; 0000-0003-4770-6679 ; 0000-0002-1724-412X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1758-5090/ac48e5/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34991082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Gi-hun</creatorcontrib><creatorcontrib>Huang, Stephanie A</creatorcontrib><creatorcontrib>Aw, Wen Y</creatorcontrib><creatorcontrib>Rathod, Mitesh L</creatorcontrib><creatorcontrib>Cho, Crescentia</creatorcontrib><creatorcontrib>Ligler, Frances S</creatorcontrib><creatorcontrib>Polacheck, William J</creatorcontrib><title>Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MμLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.</description><subject>biofluid mechanics</subject><subject>hemodynamics</subject><subject>interstitial flow</subject><subject>Lymphatic Vessels</subject><subject>mechanotransduction</subject><subject>microfluidics</subject><subject>Microfluidics - methods</subject><subject>Stress, Mechanical</subject><subject>vascular biology</subject><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctrFTEUxoNY7Mu9K8lKXPS2SWbymI0gxT6gpRvdFUImD5uSmYx5VO5_by63vSgUN8kh-c4vJ98HwAeMTjES4gxzKlYUDehM6V5Y-gYc7I7e7mpB9sFhzo8IMUoZfgf2u34YGoAcgPvbGooPam0TnLxO0YXqjddwCaq4mCbYFlgeLMylmjWMDoY6-VmFE1iSmvNU06ZWs4F-Ljbl4otXAboQfx-DPadCtu-f9yPw4-Lb9_Or1c3d5fX515uV7llfVk50jHJtrLDEcjUo6xx1RhGC7DgYww3laMCdNqMYNOLIkfYxzinvRmtY3x2BL1vuUsfJGm3nNlqQS_KTSmsZlZf_3sz-Qf6MT1IIxvuBNcDnZ0CKv6rNRU4-axuCmm2sWRKGBSECM9qkaCttXuWcrNs9g5HchCI3rstNAnIbSmv5-Pd4u4aXFJrgZCvwcZGPsaZmb_4f79Mr8tFJ3EsiEaEIcbkY1_0BiH-mBA</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>Lee, Gi-hun</creator><creator>Huang, Stephanie A</creator><creator>Aw, Wen Y</creator><creator>Rathod, Mitesh L</creator><creator>Cho, Crescentia</creator><creator>Ligler, Frances S</creator><creator>Polacheck, William J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2466-9174</orcidid><orcidid>https://orcid.org/0000-0003-4909-2084</orcidid><orcidid>https://orcid.org/0000-0003-2728-0746</orcidid><orcidid>https://orcid.org/0000-0003-4753-802X</orcidid><orcidid>https://orcid.org/0000-0003-1315-612X</orcidid><orcidid>https://orcid.org/0000-0003-4770-6679</orcidid><orcidid>https://orcid.org/0000-0002-1724-412X</orcidid></search><sort><creationdate>20220125</creationdate><title>Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow</title><author>Lee, Gi-hun ; Huang, Stephanie A ; Aw, Wen Y ; Rathod, Mitesh L ; Cho, Crescentia ; Ligler, Frances S ; Polacheck, William J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-f83657cde8e2e7a9aeff5fda220eb9dd7d570913cdb89c070f275877573bed643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biofluid mechanics</topic><topic>hemodynamics</topic><topic>interstitial flow</topic><topic>Lymphatic Vessels</topic><topic>mechanotransduction</topic><topic>microfluidics</topic><topic>Microfluidics - methods</topic><topic>Stress, Mechanical</topic><topic>vascular biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Gi-hun</creatorcontrib><creatorcontrib>Huang, Stephanie A</creatorcontrib><creatorcontrib>Aw, Wen Y</creatorcontrib><creatorcontrib>Rathod, Mitesh L</creatorcontrib><creatorcontrib>Cho, Crescentia</creatorcontrib><creatorcontrib>Ligler, Frances S</creatorcontrib><creatorcontrib>Polacheck, William J</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Gi-hun</au><au>Huang, Stephanie A</au><au>Aw, Wen Y</au><au>Rathod, Mitesh L</au><au>Cho, Crescentia</au><au>Ligler, Frances S</au><au>Polacheck, William J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2022-01-25</date><risdate>2022</risdate><volume>14</volume><issue>2</issue><spage>25007</spage><pages>25007-</pages><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MμLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>34991082</pmid><doi>10.1088/1758-5090/ac48e5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2466-9174</orcidid><orcidid>https://orcid.org/0000-0003-4909-2084</orcidid><orcidid>https://orcid.org/0000-0003-2728-0746</orcidid><orcidid>https://orcid.org/0000-0003-4753-802X</orcidid><orcidid>https://orcid.org/0000-0003-1315-612X</orcidid><orcidid>https://orcid.org/0000-0003-4770-6679</orcidid><orcidid>https://orcid.org/0000-0002-1724-412X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-5082
ispartof Biofabrication, 2022-01, Vol.14 (2), p.25007
issn 1758-5082
1758-5090
language eng
recordid cdi_crossref_primary_10_1088_1758_5090_ac48e5
source MEDLINE; Institute of Physics Journals
subjects biofluid mechanics
hemodynamics
interstitial flow
Lymphatic Vessels
mechanotransduction
microfluidics
Microfluidics - methods
Stress, Mechanical
vascular biology
title Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilayer%20microfluidic%20platform%20for%20the%20study%20of%20luminal,%20transmural,%20and%20interstitial%20flow&rft.jtitle=Biofabrication&rft.au=Lee,%20Gi-hun&rft.date=2022-01-25&rft.volume=14&rft.issue=2&rft.spage=25007&rft.pages=25007-&rft.issn=1758-5082&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/ac48e5&rft_dat=%3Cproquest_cross%3E2618228165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618228165&rft_id=info:pmid/34991082&rfr_iscdi=true