Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow
Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as w...
Gespeichert in:
Veröffentlicht in: | Biofabrication 2022-01, Vol.14 (2), p.25007 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 25007 |
container_title | Biofabrication |
container_volume | 14 |
creator | Lee, Gi-hun Huang, Stephanie A Aw, Wen Y Rathod, Mitesh L Cho, Crescentia Ligler, Frances S Polacheck, William J |
description | Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MμLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer. |
doi_str_mv | 10.1088/1758-5090/ac48e5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1758_5090_ac48e5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618228165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-f83657cde8e2e7a9aeff5fda220eb9dd7d570913cdb89c070f275877573bed643</originalsourceid><addsrcrecordid>eNp9kctrFTEUxoNY7Mu9K8lKXPS2SWbymI0gxT6gpRvdFUImD5uSmYx5VO5_by63vSgUN8kh-c4vJ98HwAeMTjES4gxzKlYUDehM6V5Y-gYc7I7e7mpB9sFhzo8IMUoZfgf2u34YGoAcgPvbGooPam0TnLxO0YXqjddwCaq4mCbYFlgeLMylmjWMDoY6-VmFE1iSmvNU06ZWs4F-Ljbl4otXAboQfx-DPadCtu-f9yPw4-Lb9_Or1c3d5fX515uV7llfVk50jHJtrLDEcjUo6xx1RhGC7DgYww3laMCdNqMYNOLIkfYxzinvRmtY3x2BL1vuUsfJGm3nNlqQS_KTSmsZlZf_3sz-Qf6MT1IIxvuBNcDnZ0CKv6rNRU4-axuCmm2sWRKGBSECM9qkaCttXuWcrNs9g5HchCI3rstNAnIbSmv5-Pd4u4aXFJrgZCvwcZGPsaZmb_4f79Mr8tFJ3EsiEaEIcbkY1_0BiH-mBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618228165</pqid></control><display><type>article</type><title>Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Lee, Gi-hun ; Huang, Stephanie A ; Aw, Wen Y ; Rathod, Mitesh L ; Cho, Crescentia ; Ligler, Frances S ; Polacheck, William J</creator><creatorcontrib>Lee, Gi-hun ; Huang, Stephanie A ; Aw, Wen Y ; Rathod, Mitesh L ; Cho, Crescentia ; Ligler, Frances S ; Polacheck, William J</creatorcontrib><description>Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MμLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.</description><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/ac48e5</identifier><identifier>PMID: 34991082</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>biofluid mechanics ; hemodynamics ; interstitial flow ; Lymphatic Vessels ; mechanotransduction ; microfluidics ; Microfluidics - methods ; Stress, Mechanical ; vascular biology</subject><ispartof>Biofabrication, 2022-01, Vol.14 (2), p.25007</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-f83657cde8e2e7a9aeff5fda220eb9dd7d570913cdb89c070f275877573bed643</citedby><cites>FETCH-LOGICAL-c464t-f83657cde8e2e7a9aeff5fda220eb9dd7d570913cdb89c070f275877573bed643</cites><orcidid>0000-0003-2466-9174 ; 0000-0003-4909-2084 ; 0000-0003-2728-0746 ; 0000-0003-4753-802X ; 0000-0003-1315-612X ; 0000-0003-4770-6679 ; 0000-0002-1724-412X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1758-5090/ac48e5/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34991082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Gi-hun</creatorcontrib><creatorcontrib>Huang, Stephanie A</creatorcontrib><creatorcontrib>Aw, Wen Y</creatorcontrib><creatorcontrib>Rathod, Mitesh L</creatorcontrib><creatorcontrib>Cho, Crescentia</creatorcontrib><creatorcontrib>Ligler, Frances S</creatorcontrib><creatorcontrib>Polacheck, William J</creatorcontrib><title>Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MμLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.</description><subject>biofluid mechanics</subject><subject>hemodynamics</subject><subject>interstitial flow</subject><subject>Lymphatic Vessels</subject><subject>mechanotransduction</subject><subject>microfluidics</subject><subject>Microfluidics - methods</subject><subject>Stress, Mechanical</subject><subject>vascular biology</subject><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctrFTEUxoNY7Mu9K8lKXPS2SWbymI0gxT6gpRvdFUImD5uSmYx5VO5_by63vSgUN8kh-c4vJ98HwAeMTjES4gxzKlYUDehM6V5Y-gYc7I7e7mpB9sFhzo8IMUoZfgf2u34YGoAcgPvbGooPam0TnLxO0YXqjddwCaq4mCbYFlgeLMylmjWMDoY6-VmFE1iSmvNU06ZWs4F-Ljbl4otXAboQfx-DPadCtu-f9yPw4-Lb9_Or1c3d5fX515uV7llfVk50jHJtrLDEcjUo6xx1RhGC7DgYww3laMCdNqMYNOLIkfYxzinvRmtY3x2BL1vuUsfJGm3nNlqQS_KTSmsZlZf_3sz-Qf6MT1IIxvuBNcDnZ0CKv6rNRU4-axuCmm2sWRKGBSECM9qkaCttXuWcrNs9g5HchCI3rstNAnIbSmv5-Pd4u4aXFJrgZCvwcZGPsaZmb_4f79Mr8tFJ3EsiEaEIcbkY1_0BiH-mBA</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>Lee, Gi-hun</creator><creator>Huang, Stephanie A</creator><creator>Aw, Wen Y</creator><creator>Rathod, Mitesh L</creator><creator>Cho, Crescentia</creator><creator>Ligler, Frances S</creator><creator>Polacheck, William J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2466-9174</orcidid><orcidid>https://orcid.org/0000-0003-4909-2084</orcidid><orcidid>https://orcid.org/0000-0003-2728-0746</orcidid><orcidid>https://orcid.org/0000-0003-4753-802X</orcidid><orcidid>https://orcid.org/0000-0003-1315-612X</orcidid><orcidid>https://orcid.org/0000-0003-4770-6679</orcidid><orcidid>https://orcid.org/0000-0002-1724-412X</orcidid></search><sort><creationdate>20220125</creationdate><title>Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow</title><author>Lee, Gi-hun ; Huang, Stephanie A ; Aw, Wen Y ; Rathod, Mitesh L ; Cho, Crescentia ; Ligler, Frances S ; Polacheck, William J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-f83657cde8e2e7a9aeff5fda220eb9dd7d570913cdb89c070f275877573bed643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biofluid mechanics</topic><topic>hemodynamics</topic><topic>interstitial flow</topic><topic>Lymphatic Vessels</topic><topic>mechanotransduction</topic><topic>microfluidics</topic><topic>Microfluidics - methods</topic><topic>Stress, Mechanical</topic><topic>vascular biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Gi-hun</creatorcontrib><creatorcontrib>Huang, Stephanie A</creatorcontrib><creatorcontrib>Aw, Wen Y</creatorcontrib><creatorcontrib>Rathod, Mitesh L</creatorcontrib><creatorcontrib>Cho, Crescentia</creatorcontrib><creatorcontrib>Ligler, Frances S</creatorcontrib><creatorcontrib>Polacheck, William J</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Gi-hun</au><au>Huang, Stephanie A</au><au>Aw, Wen Y</au><au>Rathod, Mitesh L</au><au>Cho, Crescentia</au><au>Ligler, Frances S</au><au>Polacheck, William J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2022-01-25</date><risdate>2022</risdate><volume>14</volume><issue>2</issue><spage>25007</spage><pages>25007-</pages><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MμLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>34991082</pmid><doi>10.1088/1758-5090/ac48e5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2466-9174</orcidid><orcidid>https://orcid.org/0000-0003-4909-2084</orcidid><orcidid>https://orcid.org/0000-0003-2728-0746</orcidid><orcidid>https://orcid.org/0000-0003-4753-802X</orcidid><orcidid>https://orcid.org/0000-0003-1315-612X</orcidid><orcidid>https://orcid.org/0000-0003-4770-6679</orcidid><orcidid>https://orcid.org/0000-0002-1724-412X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-5082 |
ispartof | Biofabrication, 2022-01, Vol.14 (2), p.25007 |
issn | 1758-5082 1758-5090 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1758_5090_ac48e5 |
source | MEDLINE; Institute of Physics Journals |
subjects | biofluid mechanics hemodynamics interstitial flow Lymphatic Vessels mechanotransduction microfluidics Microfluidics - methods Stress, Mechanical vascular biology |
title | Multilayer microfluidic platform for the study of luminal, transmural, and interstitial flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilayer%20microfluidic%20platform%20for%20the%20study%20of%20luminal,%20transmural,%20and%20interstitial%20flow&rft.jtitle=Biofabrication&rft.au=Lee,%20Gi-hun&rft.date=2022-01-25&rft.volume=14&rft.issue=2&rft.spage=25007&rft.pages=25007-&rft.issn=1758-5082&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/ac48e5&rft_dat=%3Cproquest_cross%3E2618228165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618228165&rft_id=info:pmid/34991082&rfr_iscdi=true |