Quantizations of transposed Poisson algebras by Novikov deformations
The notions of the Novikov deformation of a commutative associative algebra and the corresponding classical limit are introduced. We show such a classical limit belongs to a subclass of transposed Poisson algebras, and hence the Novikov deformation is defined to be the quantization of the correspond...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-12, Vol.57 (49), p.495203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 49 |
container_start_page | 495203 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 57 |
creator | Chen, Siyuan Bai, Chengming |
description | The notions of the Novikov deformation of a commutative associative algebra and the corresponding classical limit are introduced. We show such a classical limit belongs to a subclass of transposed Poisson algebras, and hence the Novikov deformation is defined to be the quantization of the corresponding transposed Poisson algebra. As a direct consequence, we revisit the relationship between transposed Poisson algebras and Novikov–Poisson algebras due to the fact that there is a natural Novikov deformation of the commutative associative algebra in a Novikov–Poisson algebra. Hence all transposed Poisson algebras of Novikov–Poisson type, including unital transposed Poisson algebras, can be quantized. Finally, we classify the quantizations of 2-dimensional complex transposed Poisson algebras in which the Lie brackets are non-abelian up to equivalence. |
doi_str_mv | 10.1088/1751-8121/ad9128 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ad9128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aad9128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-f0cfa0c818c454bcdf9d5abcda442631101d6ec807f44a68be33c86f1028faf93</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWr173JMnY2eSTbo5SrUqFD9Az8tkPyS1zYbdtFB_vSmRnhQG3jC895j3GLtEuEGQcoLTHBOJKU7IlJjKIzY6nI4PO2an7CzGJUAuoExH7O5tQ01Xf1NX-yZy73gXqImtj9bwV1_H6BtOq09bBYq82vFnv62__JYb63xYD7JzduJoFe3FL47Zx_z-ffaYLF4enma3i0RjKbrEgXYEWqLUIheVNq40OfVIQqRFhghoCqslTJ0QVMjKZpmWhUNIpSNXZmMGg68OPsZgnWpDvaawUwhq34Lax1T7yGpooZdcDZLat2rpN6HpH1Sk8qkSZT95CplqjeuJ138Q__X9AT5Qa8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantizations of transposed Poisson algebras by Novikov deformations</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chen, Siyuan ; Bai, Chengming</creator><creatorcontrib>Chen, Siyuan ; Bai, Chengming</creatorcontrib><description>The notions of the Novikov deformation of a commutative associative algebra and the corresponding classical limit are introduced. We show such a classical limit belongs to a subclass of transposed Poisson algebras, and hence the Novikov deformation is defined to be the quantization of the corresponding transposed Poisson algebra. As a direct consequence, we revisit the relationship between transposed Poisson algebras and Novikov–Poisson algebras due to the fact that there is a natural Novikov deformation of the commutative associative algebra in a Novikov–Poisson algebra. Hence all transposed Poisson algebras of Novikov–Poisson type, including unital transposed Poisson algebras, can be quantized. Finally, we classify the quantizations of 2-dimensional complex transposed Poisson algebras in which the Lie brackets are non-abelian up to equivalence.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ad9128</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>deformation ; Novikov algebra ; quantization ; transposed Poisson algebra</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2024-12, Vol.57 (49), p.495203</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-f0cfa0c818c454bcdf9d5abcda442631101d6ec807f44a68be33c86f1028faf93</cites><orcidid>0000-0002-9242-5887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ad9128/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Chen, Siyuan</creatorcontrib><creatorcontrib>Bai, Chengming</creatorcontrib><title>Quantizations of transposed Poisson algebras by Novikov deformations</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The notions of the Novikov deformation of a commutative associative algebra and the corresponding classical limit are introduced. We show such a classical limit belongs to a subclass of transposed Poisson algebras, and hence the Novikov deformation is defined to be the quantization of the corresponding transposed Poisson algebra. As a direct consequence, we revisit the relationship between transposed Poisson algebras and Novikov–Poisson algebras due to the fact that there is a natural Novikov deformation of the commutative associative algebra in a Novikov–Poisson algebra. Hence all transposed Poisson algebras of Novikov–Poisson type, including unital transposed Poisson algebras, can be quantized. Finally, we classify the quantizations of 2-dimensional complex transposed Poisson algebras in which the Lie brackets are non-abelian up to equivalence.</description><subject>deformation</subject><subject>Novikov algebra</subject><subject>quantization</subject><subject>transposed Poisson algebra</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQXUTBWr173JMnY2eSTbo5SrUqFD9Az8tkPyS1zYbdtFB_vSmRnhQG3jC895j3GLtEuEGQcoLTHBOJKU7IlJjKIzY6nI4PO2an7CzGJUAuoExH7O5tQ01Xf1NX-yZy73gXqImtj9bwV1_H6BtOq09bBYq82vFnv62__JYb63xYD7JzduJoFe3FL47Zx_z-ffaYLF4enma3i0RjKbrEgXYEWqLUIheVNq40OfVIQqRFhghoCqslTJ0QVMjKZpmWhUNIpSNXZmMGg68OPsZgnWpDvaawUwhq34Lax1T7yGpooZdcDZLat2rpN6HpH1Sk8qkSZT95CplqjeuJ138Q__X9AT5Qa8I</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Chen, Siyuan</creator><creator>Bai, Chengming</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9242-5887</orcidid></search><sort><creationdate>20241206</creationdate><title>Quantizations of transposed Poisson algebras by Novikov deformations</title><author>Chen, Siyuan ; Bai, Chengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-f0cfa0c818c454bcdf9d5abcda442631101d6ec807f44a68be33c86f1028faf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deformation</topic><topic>Novikov algebra</topic><topic>quantization</topic><topic>transposed Poisson algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Siyuan</creatorcontrib><creatorcontrib>Bai, Chengming</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Siyuan</au><au>Bai, Chengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantizations of transposed Poisson algebras by Novikov deformations</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>57</volume><issue>49</issue><spage>495203</spage><pages>495203-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The notions of the Novikov deformation of a commutative associative algebra and the corresponding classical limit are introduced. We show such a classical limit belongs to a subclass of transposed Poisson algebras, and hence the Novikov deformation is defined to be the quantization of the corresponding transposed Poisson algebra. As a direct consequence, we revisit the relationship between transposed Poisson algebras and Novikov–Poisson algebras due to the fact that there is a natural Novikov deformation of the commutative associative algebra in a Novikov–Poisson algebra. Hence all transposed Poisson algebras of Novikov–Poisson type, including unital transposed Poisson algebras, can be quantized. Finally, we classify the quantizations of 2-dimensional complex transposed Poisson algebras in which the Lie brackets are non-abelian up to equivalence.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ad9128</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9242-5887</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2024-12, Vol.57 (49), p.495203 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_ad9128 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | deformation Novikov algebra quantization transposed Poisson algebra |
title | Quantizations of transposed Poisson algebras by Novikov deformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantizations%20of%20transposed%20Poisson%20algebras%20by%20Novikov%20deformations&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Chen,%20Siyuan&rft.date=2024-12-06&rft.volume=57&rft.issue=49&rft.spage=495203&rft.pages=495203-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ad9128&rft_dat=%3Ciop_cross%3Eaad9128%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |