Quantizations of transposed Poisson algebras by Novikov deformations

The notions of the Novikov deformation of a commutative associative algebra and the corresponding classical limit are introduced. We show such a classical limit belongs to a subclass of transposed Poisson algebras, and hence the Novikov deformation is defined to be the quantization of the correspond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-12, Vol.57 (49), p.495203
Hauptverfasser: Chen, Siyuan, Bai, Chengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The notions of the Novikov deformation of a commutative associative algebra and the corresponding classical limit are introduced. We show such a classical limit belongs to a subclass of transposed Poisson algebras, and hence the Novikov deformation is defined to be the quantization of the corresponding transposed Poisson algebra. As a direct consequence, we revisit the relationship between transposed Poisson algebras and Novikov–Poisson algebras due to the fact that there is a natural Novikov deformation of the commutative associative algebra in a Novikov–Poisson algebra. Hence all transposed Poisson algebras of Novikov–Poisson type, including unital transposed Poisson algebras, can be quantized. Finally, we classify the quantizations of 2-dimensional complex transposed Poisson algebras in which the Lie brackets are non-abelian up to equivalence.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ad9128