Row–column duality and combinatorial topological strings
Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat G -bundles for finite groups G in two...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-02, Vol.57 (6), p.65202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 65202 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 57 |
creator | Padellaro, Adrian Radhakrishnan, Rajath Ramgoolam, Sanjaye |
description | Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat
G
-bundles for finite groups
G
in two dimensions, denoted
G
-TQFTs. We define analogous combinatorial topological strings related to two dimensional topological field theories (TQFTs) based on fusion coefficients of finite groups. These TQFTs are denoted as
R
(
G
)-TQFTs and allow analogous integrality results to be derived for partial row sums of characters over conjugacy classes along fixed rows. This relation between the
G
-TQFTs and
R
(
G
)-TQFTs defines a row-column duality for character tables, which provides a physical framework for exploring the mathematical analogies between rows and columns of character tables. These constructive proofs of integrality are complemented with the proof of similar and complementary results using the more traditional Galois theoretic framework for integrality properties of character tables. The partial row and column sums are used to define generalised partitions of the integer row and column sums, which are of interest in combinatorial representation theory. |
doi_str_mv | 10.1088/1751-8121/ad1d24 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ad1d24</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aad1d24</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-c0f1593f7cd60a09af8e8cd9941f8c0f77976339fc05e3e71c4cff36e1469d6a3</originalsourceid><addsrcrecordid>eNp1j81KxDAUhYMoOI7uXfYBrJPbtE3iTgYdhQFBdB1ifoYMbVOSFJmd7-Ab-iS2VGbn6h7uvedwPoSuAd8CZmwFtIKcQQErqUEX5QlaHFenRw3kHF3EuMe4KjEvFuju1X_-fH0r3wxtl-lBNi4dMtnpTPn2w3Uy-eBkkyXf-8bvnBp1TMF1u3iJzqxsorn6m0v0_vjwtn7Kty-b5_X9NlcFISlX2ELFiaVK11hiLi0zTGnOS7BsPFLKaU0ItwpXhhgKqlTWktpAWXNdS7JEeM5VwccYjBV9cK0MBwFYTOxighMTqJjZR8vNbHG-F3s_hG4s-P_7LzlGXFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Row–column duality and combinatorial topological strings</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Padellaro, Adrian ; Radhakrishnan, Rajath ; Ramgoolam, Sanjaye</creator><creatorcontrib>Padellaro, Adrian ; Radhakrishnan, Rajath ; Ramgoolam, Sanjaye</creatorcontrib><description>Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat
G
-bundles for finite groups
G
in two dimensions, denoted
G
-TQFTs. We define analogous combinatorial topological strings related to two dimensional topological field theories (TQFTs) based on fusion coefficients of finite groups. These TQFTs are denoted as
R
(
G
)-TQFTs and allow analogous integrality results to be derived for partial row sums of characters over conjugacy classes along fixed rows. This relation between the
G
-TQFTs and
R
(
G
)-TQFTs defines a row-column duality for character tables, which provides a physical framework for exploring the mathematical analogies between rows and columns of character tables. These constructive proofs of integrality are complemented with the proof of similar and complementary results using the more traditional Galois theoretic framework for integrality properties of character tables. The partial row and column sums are used to define generalised partitions of the integer row and column sums, which are of interest in combinatorial representation theory.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ad1d24</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>character theory ; finite groups ; galois theory ; representation theory ; topological quantum field theory</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2024-02, Vol.57 (6), p.65202</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-c0f1593f7cd60a09af8e8cd9941f8c0f77976339fc05e3e71c4cff36e1469d6a3</cites><orcidid>0000-0002-1211-4780 ; 0000-0003-1158-3320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ad1d24/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Padellaro, Adrian</creatorcontrib><creatorcontrib>Radhakrishnan, Rajath</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><title>Row–column duality and combinatorial topological strings</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat
G
-bundles for finite groups
G
in two dimensions, denoted
G
-TQFTs. We define analogous combinatorial topological strings related to two dimensional topological field theories (TQFTs) based on fusion coefficients of finite groups. These TQFTs are denoted as
R
(
G
)-TQFTs and allow analogous integrality results to be derived for partial row sums of characters over conjugacy classes along fixed rows. This relation between the
G
-TQFTs and
R
(
G
)-TQFTs defines a row-column duality for character tables, which provides a physical framework for exploring the mathematical analogies between rows and columns of character tables. These constructive proofs of integrality are complemented with the proof of similar and complementary results using the more traditional Galois theoretic framework for integrality properties of character tables. The partial row and column sums are used to define generalised partitions of the integer row and column sums, which are of interest in combinatorial representation theory.</description><subject>character theory</subject><subject>finite groups</subject><subject>galois theory</subject><subject>representation theory</subject><subject>topological quantum field theory</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1j81KxDAUhYMoOI7uXfYBrJPbtE3iTgYdhQFBdB1ifoYMbVOSFJmd7-Ab-iS2VGbn6h7uvedwPoSuAd8CZmwFtIKcQQErqUEX5QlaHFenRw3kHF3EuMe4KjEvFuju1X_-fH0r3wxtl-lBNi4dMtnpTPn2w3Uy-eBkkyXf-8bvnBp1TMF1u3iJzqxsorn6m0v0_vjwtn7Kty-b5_X9NlcFISlX2ELFiaVK11hiLi0zTGnOS7BsPFLKaU0ItwpXhhgKqlTWktpAWXNdS7JEeM5VwccYjBV9cK0MBwFYTOxighMTqJjZR8vNbHG-F3s_hG4s-P_7LzlGXFY</recordid><startdate>20240209</startdate><enddate>20240209</enddate><creator>Padellaro, Adrian</creator><creator>Radhakrishnan, Rajath</creator><creator>Ramgoolam, Sanjaye</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1211-4780</orcidid><orcidid>https://orcid.org/0000-0003-1158-3320</orcidid></search><sort><creationdate>20240209</creationdate><title>Row–column duality and combinatorial topological strings</title><author>Padellaro, Adrian ; Radhakrishnan, Rajath ; Ramgoolam, Sanjaye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-c0f1593f7cd60a09af8e8cd9941f8c0f77976339fc05e3e71c4cff36e1469d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>character theory</topic><topic>finite groups</topic><topic>galois theory</topic><topic>representation theory</topic><topic>topological quantum field theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padellaro, Adrian</creatorcontrib><creatorcontrib>Radhakrishnan, Rajath</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padellaro, Adrian</au><au>Radhakrishnan, Rajath</au><au>Ramgoolam, Sanjaye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Row–column duality and combinatorial topological strings</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2024-02-09</date><risdate>2024</risdate><volume>57</volume><issue>6</issue><spage>65202</spage><pages>65202-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat
G
-bundles for finite groups
G
in two dimensions, denoted
G
-TQFTs. We define analogous combinatorial topological strings related to two dimensional topological field theories (TQFTs) based on fusion coefficients of finite groups. These TQFTs are denoted as
R
(
G
)-TQFTs and allow analogous integrality results to be derived for partial row sums of characters over conjugacy classes along fixed rows. This relation between the
G
-TQFTs and
R
(
G
)-TQFTs defines a row-column duality for character tables, which provides a physical framework for exploring the mathematical analogies between rows and columns of character tables. These constructive proofs of integrality are complemented with the proof of similar and complementary results using the more traditional Galois theoretic framework for integrality properties of character tables. The partial row and column sums are used to define generalised partitions of the integer row and column sums, which are of interest in combinatorial representation theory.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ad1d24</doi><tpages>68</tpages><orcidid>https://orcid.org/0000-0002-1211-4780</orcidid><orcidid>https://orcid.org/0000-0003-1158-3320</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2024-02, Vol.57 (6), p.65202 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_ad1d24 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | character theory finite groups galois theory representation theory topological quantum field theory |
title | Row–column duality and combinatorial topological strings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Row%E2%80%93column%20duality%20and%20combinatorial%20topological%20strings&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Padellaro,%20Adrian&rft.date=2024-02-09&rft.volume=57&rft.issue=6&rft.spage=65202&rft.pages=65202-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ad1d24&rft_dat=%3Ciop_cross%3Eaad1d24%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |