Row–column duality and combinatorial topological strings

Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat G -bundles for finite groups G in two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-02, Vol.57 (6), p.65202
Hauptverfasser: Padellaro, Adrian, Radhakrishnan, Rajath, Ramgoolam, Sanjaye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 65202
container_title Journal of physics. A, Mathematical and theoretical
container_volume 57
creator Padellaro, Adrian
Radhakrishnan, Rajath
Ramgoolam, Sanjaye
description Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat G -bundles for finite groups G in two dimensions, denoted G -TQFTs. We define analogous combinatorial topological strings related to two dimensional topological field theories (TQFTs) based on fusion coefficients of finite groups. These TQFTs are denoted as R ( G )-TQFTs and allow analogous integrality results to be derived for partial row sums of characters over conjugacy classes along fixed rows. This relation between the G -TQFTs and R ( G )-TQFTs defines a row-column duality for character tables, which provides a physical framework for exploring the mathematical analogies between rows and columns of character tables. These constructive proofs of integrality are complemented with the proof of similar and complementary results using the more traditional Galois theoretic framework for integrality properties of character tables. The partial row and column sums are used to define generalised partitions of the integer row and column sums, which are of interest in combinatorial representation theory.
doi_str_mv 10.1088/1751-8121/ad1d24
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ad1d24</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aad1d24</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-c0f1593f7cd60a09af8e8cd9941f8c0f77976339fc05e3e71c4cff36e1469d6a3</originalsourceid><addsrcrecordid>eNp1j81KxDAUhYMoOI7uXfYBrJPbtE3iTgYdhQFBdB1ifoYMbVOSFJmd7-Ab-iS2VGbn6h7uvedwPoSuAd8CZmwFtIKcQQErqUEX5QlaHFenRw3kHF3EuMe4KjEvFuju1X_-fH0r3wxtl-lBNi4dMtnpTPn2w3Uy-eBkkyXf-8bvnBp1TMF1u3iJzqxsorn6m0v0_vjwtn7Kty-b5_X9NlcFISlX2ELFiaVK11hiLi0zTGnOS7BsPFLKaU0ItwpXhhgKqlTWktpAWXNdS7JEeM5VwccYjBV9cK0MBwFYTOxighMTqJjZR8vNbHG-F3s_hG4s-P_7LzlGXFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Row–column duality and combinatorial topological strings</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Padellaro, Adrian ; Radhakrishnan, Rajath ; Ramgoolam, Sanjaye</creator><creatorcontrib>Padellaro, Adrian ; Radhakrishnan, Rajath ; Ramgoolam, Sanjaye</creatorcontrib><description>Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat G -bundles for finite groups G in two dimensions, denoted G -TQFTs. We define analogous combinatorial topological strings related to two dimensional topological field theories (TQFTs) based on fusion coefficients of finite groups. These TQFTs are denoted as R ( G )-TQFTs and allow analogous integrality results to be derived for partial row sums of characters over conjugacy classes along fixed rows. This relation between the G -TQFTs and R ( G )-TQFTs defines a row-column duality for character tables, which provides a physical framework for exploring the mathematical analogies between rows and columns of character tables. These constructive proofs of integrality are complemented with the proof of similar and complementary results using the more traditional Galois theoretic framework for integrality properties of character tables. The partial row and column sums are used to define generalised partitions of the integer row and column sums, which are of interest in combinatorial representation theory.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ad1d24</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>character theory ; finite groups ; galois theory ; representation theory ; topological quantum field theory</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2024-02, Vol.57 (6), p.65202</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-c0f1593f7cd60a09af8e8cd9941f8c0f77976339fc05e3e71c4cff36e1469d6a3</cites><orcidid>0000-0002-1211-4780 ; 0000-0003-1158-3320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ad1d24/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Padellaro, Adrian</creatorcontrib><creatorcontrib>Radhakrishnan, Rajath</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><title>Row–column duality and combinatorial topological strings</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat G -bundles for finite groups G in two dimensions, denoted G -TQFTs. We define analogous combinatorial topological strings related to two dimensional topological field theories (TQFTs) based on fusion coefficients of finite groups. These TQFTs are denoted as R ( G )-TQFTs and allow analogous integrality results to be derived for partial row sums of characters over conjugacy classes along fixed rows. This relation between the G -TQFTs and R ( G )-TQFTs defines a row-column duality for character tables, which provides a physical framework for exploring the mathematical analogies between rows and columns of character tables. These constructive proofs of integrality are complemented with the proof of similar and complementary results using the more traditional Galois theoretic framework for integrality properties of character tables. The partial row and column sums are used to define generalised partitions of the integer row and column sums, which are of interest in combinatorial representation theory.</description><subject>character theory</subject><subject>finite groups</subject><subject>galois theory</subject><subject>representation theory</subject><subject>topological quantum field theory</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1j81KxDAUhYMoOI7uXfYBrJPbtE3iTgYdhQFBdB1ifoYMbVOSFJmd7-Ab-iS2VGbn6h7uvedwPoSuAd8CZmwFtIKcQQErqUEX5QlaHFenRw3kHF3EuMe4KjEvFuju1X_-fH0r3wxtl-lBNi4dMtnpTPn2w3Uy-eBkkyXf-8bvnBp1TMF1u3iJzqxsorn6m0v0_vjwtn7Kty-b5_X9NlcFISlX2ELFiaVK11hiLi0zTGnOS7BsPFLKaU0ItwpXhhgKqlTWktpAWXNdS7JEeM5VwccYjBV9cK0MBwFYTOxighMTqJjZR8vNbHG-F3s_hG4s-P_7LzlGXFY</recordid><startdate>20240209</startdate><enddate>20240209</enddate><creator>Padellaro, Adrian</creator><creator>Radhakrishnan, Rajath</creator><creator>Ramgoolam, Sanjaye</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1211-4780</orcidid><orcidid>https://orcid.org/0000-0003-1158-3320</orcidid></search><sort><creationdate>20240209</creationdate><title>Row–column duality and combinatorial topological strings</title><author>Padellaro, Adrian ; Radhakrishnan, Rajath ; Ramgoolam, Sanjaye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-c0f1593f7cd60a09af8e8cd9941f8c0f77976339fc05e3e71c4cff36e1469d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>character theory</topic><topic>finite groups</topic><topic>galois theory</topic><topic>representation theory</topic><topic>topological quantum field theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padellaro, Adrian</creatorcontrib><creatorcontrib>Radhakrishnan, Rajath</creatorcontrib><creatorcontrib>Ramgoolam, Sanjaye</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padellaro, Adrian</au><au>Radhakrishnan, Rajath</au><au>Ramgoolam, Sanjaye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Row–column duality and combinatorial topological strings</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2024-02-09</date><risdate>2024</risdate><volume>57</volume><issue>6</issue><spage>65202</spage><pages>65202-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Integrality properties of partial sums over irreducible representations, along columns of character tables of finite groups, were recently derived using combinatorial topological string theories (CTST). These CTST were based on Dijkgraaf-Witten theories of flat G -bundles for finite groups G in two dimensions, denoted G -TQFTs. We define analogous combinatorial topological strings related to two dimensional topological field theories (TQFTs) based on fusion coefficients of finite groups. These TQFTs are denoted as R ( G )-TQFTs and allow analogous integrality results to be derived for partial row sums of characters over conjugacy classes along fixed rows. This relation between the G -TQFTs and R ( G )-TQFTs defines a row-column duality for character tables, which provides a physical framework for exploring the mathematical analogies between rows and columns of character tables. These constructive proofs of integrality are complemented with the proof of similar and complementary results using the more traditional Galois theoretic framework for integrality properties of character tables. The partial row and column sums are used to define generalised partitions of the integer row and column sums, which are of interest in combinatorial representation theory.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ad1d24</doi><tpages>68</tpages><orcidid>https://orcid.org/0000-0002-1211-4780</orcidid><orcidid>https://orcid.org/0000-0003-1158-3320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2024-02, Vol.57 (6), p.65202
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ad1d24
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects character theory
finite groups
galois theory
representation theory
topological quantum field theory
title Row–column duality and combinatorial topological strings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Row%E2%80%93column%20duality%20and%20combinatorial%20topological%20strings&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Padellaro,%20Adrian&rft.date=2024-02-09&rft.volume=57&rft.issue=6&rft.spage=65202&rft.pages=65202-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ad1d24&rft_dat=%3Ciop_cross%3Eaad1d24%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true