On the convex characterisation of the set of unital quantum channels
In this paper, we consider the convex structure of the set of unital quantum channels. To do this, we introduce a novel framework to construct and characterise different families of low-rank unital quantum maps. In this framework, unital quantum maps are represented as a set of complex parameters on...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-11, Vol.56 (45), p.455308 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 45 |
container_start_page | 455308 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 56 |
creator | Rodriguez-Ramos, Constantino Wilmott, Colin M |
description | In this paper, we consider the convex structure of the set of unital quantum channels. To do this, we introduce a novel framework to construct and characterise different families of low-rank unital quantum maps. In this framework, unital quantum maps are represented as a set of complex parameters on which we impose a set of constraints. The different families of unital maps are obtained by mapping those parameters into the operator representation of a quantum map. For these families, we also introduce a scalar measuring their distance to the set of mixed-unitary maps. We consider the particular case of qutrit channels which is the smallest set of maps for which the existence of non-unitary extremal maps is known. In this setting, we show how our framework generalises the description of well-known maps such as the antisymmetric Werner–Holevo map but also novel families of qutrit maps. |
doi_str_mv | 10.1088/1751-8121/acfddb |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_acfddb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacfddb</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-d26e50b258ddea0d236ee2335f5c4d9e37e4f831ee47a4ec93d8a1276516badf3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdYz6AUD_iPI6oQEGq1AucrY29VlOldrEdBH9PQ1BvnHa0O7OaGUJuGb1ntK4XrJIsrxlnC9DWmPaMzE6r8xNm4pJcxbijVBa04TPyuHFZ2mKmvfvEr0xvIYBOGLoIqfMu8_b3HDGNcHBdgj77GMClYT-yncM-XpMLC33Em785J-_PT2_Ll3y9Wb0uH9a55pVMueElStpyWRuDQA0XJSIXQlqpC9OgqLCwtWCIRQUF6kaYGhivSsnKFowVc0Knvzr4GANadQjdHsK3YlSNLagxphojq6mFo-RuknT-oHZ-CO5o8H_6D-GcYFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the convex characterisation of the set of unital quantum channels</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Rodriguez-Ramos, Constantino ; Wilmott, Colin M</creator><creatorcontrib>Rodriguez-Ramos, Constantino ; Wilmott, Colin M</creatorcontrib><description>In this paper, we consider the convex structure of the set of unital quantum channels. To do this, we introduce a novel framework to construct and characterise different families of low-rank unital quantum maps. In this framework, unital quantum maps are represented as a set of complex parameters on which we impose a set of constraints. The different families of unital maps are obtained by mapping those parameters into the operator representation of a quantum map. For these families, we also introduce a scalar measuring their distance to the set of mixed-unitary maps. We consider the particular case of qutrit channels which is the smallest set of maps for which the existence of non-unitary extremal maps is known. In this setting, we show how our framework generalises the description of well-known maps such as the antisymmetric Werner–Holevo map but also novel families of qutrit maps.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acfddb</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>convex characterisation ; quantum foundations ; quantum state space geometry ; unital quantum channels</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-11, Vol.56 (45), p.455308</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-d26e50b258ddea0d236ee2335f5c4d9e37e4f831ee47a4ec93d8a1276516badf3</cites><orcidid>0009-0009-0112-4391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acfddb/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,27928,27929,53850,53897</link.rule.ids></links><search><creatorcontrib>Rodriguez-Ramos, Constantino</creatorcontrib><creatorcontrib>Wilmott, Colin M</creatorcontrib><title>On the convex characterisation of the set of unital quantum channels</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>In this paper, we consider the convex structure of the set of unital quantum channels. To do this, we introduce a novel framework to construct and characterise different families of low-rank unital quantum maps. In this framework, unital quantum maps are represented as a set of complex parameters on which we impose a set of constraints. The different families of unital maps are obtained by mapping those parameters into the operator representation of a quantum map. For these families, we also introduce a scalar measuring their distance to the set of mixed-unitary maps. We consider the particular case of qutrit channels which is the smallest set of maps for which the existence of non-unitary extremal maps is known. In this setting, we show how our framework generalises the description of well-known maps such as the antisymmetric Werner–Holevo map but also novel families of qutrit maps.</description><subject>convex characterisation</subject><subject>quantum foundations</subject><subject>quantum state space geometry</subject><subject>unital quantum channels</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UMtOwzAQtBBIlMKdYz6AUD_iPI6oQEGq1AucrY29VlOldrEdBH9PQ1BvnHa0O7OaGUJuGb1ntK4XrJIsrxlnC9DWmPaMzE6r8xNm4pJcxbijVBa04TPyuHFZ2mKmvfvEr0xvIYBOGLoIqfMu8_b3HDGNcHBdgj77GMClYT-yncM-XpMLC33Em785J-_PT2_Ll3y9Wb0uH9a55pVMueElStpyWRuDQA0XJSIXQlqpC9OgqLCwtWCIRQUF6kaYGhivSsnKFowVc0Knvzr4GANadQjdHsK3YlSNLagxphojq6mFo-RuknT-oHZ-CO5o8H_6D-GcYFw</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Rodriguez-Ramos, Constantino</creator><creator>Wilmott, Colin M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-0112-4391</orcidid></search><sort><creationdate>20231110</creationdate><title>On the convex characterisation of the set of unital quantum channels</title><author>Rodriguez-Ramos, Constantino ; Wilmott, Colin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-d26e50b258ddea0d236ee2335f5c4d9e37e4f831ee47a4ec93d8a1276516badf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>convex characterisation</topic><topic>quantum foundations</topic><topic>quantum state space geometry</topic><topic>unital quantum channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez-Ramos, Constantino</creatorcontrib><creatorcontrib>Wilmott, Colin M</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez-Ramos, Constantino</au><au>Wilmott, Colin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the convex characterisation of the set of unital quantum channels</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-11-10</date><risdate>2023</risdate><volume>56</volume><issue>45</issue><spage>455308</spage><pages>455308-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>In this paper, we consider the convex structure of the set of unital quantum channels. To do this, we introduce a novel framework to construct and characterise different families of low-rank unital quantum maps. In this framework, unital quantum maps are represented as a set of complex parameters on which we impose a set of constraints. The different families of unital maps are obtained by mapping those parameters into the operator representation of a quantum map. For these families, we also introduce a scalar measuring their distance to the set of mixed-unitary maps. We consider the particular case of qutrit channels which is the smallest set of maps for which the existence of non-unitary extremal maps is known. In this setting, we show how our framework generalises the description of well-known maps such as the antisymmetric Werner–Holevo map but also novel families of qutrit maps.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acfddb</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0009-0112-4391</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2023-11, Vol.56 (45), p.455308 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_acfddb |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | convex characterisation quantum foundations quantum state space geometry unital quantum channels |
title | On the convex characterisation of the set of unital quantum channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20convex%20characterisation%20of%20the%20set%20of%20unital%20quantum%20channels&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Rodriguez-Ramos,%20Constantino&rft.date=2023-11-10&rft.volume=56&rft.issue=45&rft.spage=455308&rft.pages=455308-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acfddb&rft_dat=%3Ciop_cross%3Eaacfddb%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |