Renormalization group analysis of a self-organized critical system: intrinsic anisotropy vs random environment

We study a self-organized critical system coupled to an isotropic random fluid environment. The former is described by a strongly anisotropic continuous (coarse-grained) model introduced by Hwa and Kardar (1989 Phys. Rev. Lett. 62 1813; 1992 Phys. Rev. A 45 7002); the latter is described by the stir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-09, Vol.56 (37), p.375002
Hauptverfasser: Antonov, N V, Kakin, P I, Lebedev, N M, Yu Luchin, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 37
container_start_page 375002
container_title Journal of physics. A, Mathematical and theoretical
container_volume 56
creator Antonov, N V
Kakin, P I
Lebedev, N M
Yu Luchin, A
description We study a self-organized critical system coupled to an isotropic random fluid environment. The former is described by a strongly anisotropic continuous (coarse-grained) model introduced by Hwa and Kardar (1989 Phys. Rev. Lett. 62 1813; 1992 Phys. Rev. A 45 7002); the latter is described by the stirred Navier–Stokes equation due to Forster et al (1977 Phys. Rev. A 16 732). The full problem of two coupled stochastic equations is represented as a field-theoretic model, which is shown to be multiplicatively renormalizable. The corresponding renormalization group (RG) equations possess a semi-infinite curve of fixed points in the four-dimensional space of the model parameters. The whole curve is infrared attractive for realistic values of parameters; its endpoint corresponds to the purely isotropic regime where the original Hwa–Kardar nonlinearity becomes irrelevant. There, one is left with a simple advection of a passive scalar field by the external environment. The main critical dimensions are calculated to leading (one-loop) order (first terms in the ϵ = 4 − d expansion); some of them are exact in all orders. These dimensions remain the same along that curve, which makes it reasonable to interpret it as a single universality class. However, the correction exponents do vary along the curve. It is therefore not clear whether the curve survives in all orders of the RG expansion or shrinks to a single point when the higher-order corrections are taken into account.
doi_str_mv 10.1088/1751-8121/acef7c
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_acef7c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacef7c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e58235be2861e516c61a69aaa3e09e34281b8eb291ecb17d4d42acc1700809bb3</originalsourceid><addsrcrecordid>eNp1kMtqwzAQRUVpoWnafZf6gLrRyC-5uxL6gkChtGszlsdBwZaMpAScr29CSnZdzWW45y4OY_cgHkEotYAyh0SBhAVq6kp9wWbn1-U5Q3rNbkLYCJFnopIzZr_IOj9gb_YYjbN87d125Gixn4IJ3HUceaC-S5xfozV7arn2JhqNPQ9TiDQ8cWOjNzYYfeBMcNG7ceK7wD3a1g2c7M54Zwey8ZZdddgHuvu7c_bz-vK9fE9Wn28fy-dVolMpY0K5kmnekFQFUA6FLgCLChFTEhWlmVTQKGpkBaQbKNuszSRqDaUQSlRNk86ZOO1q70Lw1NWjNwP6qQZRH33VRyH1UU598nVAHk6IcWO9cVt_UBD-r_8CuWdwWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Renormalization group analysis of a self-organized critical system: intrinsic anisotropy vs random environment</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Antonov, N V ; Kakin, P I ; Lebedev, N M ; Yu Luchin, A</creator><creatorcontrib>Antonov, N V ; Kakin, P I ; Lebedev, N M ; Yu Luchin, A</creatorcontrib><description>We study a self-organized critical system coupled to an isotropic random fluid environment. The former is described by a strongly anisotropic continuous (coarse-grained) model introduced by Hwa and Kardar (1989 Phys. Rev. Lett. 62 1813; 1992 Phys. Rev. A 45 7002); the latter is described by the stirred Navier–Stokes equation due to Forster et al (1977 Phys. Rev. A 16 732). The full problem of two coupled stochastic equations is represented as a field-theoretic model, which is shown to be multiplicatively renormalizable. The corresponding renormalization group (RG) equations possess a semi-infinite curve of fixed points in the four-dimensional space of the model parameters. The whole curve is infrared attractive for realistic values of parameters; its endpoint corresponds to the purely isotropic regime where the original Hwa–Kardar nonlinearity becomes irrelevant. There, one is left with a simple advection of a passive scalar field by the external environment. The main critical dimensions are calculated to leading (one-loop) order (first terms in the ϵ = 4 − d expansion); some of them are exact in all orders. These dimensions remain the same along that curve, which makes it reasonable to interpret it as a single universality class. However, the correction exponents do vary along the curve. It is therefore not clear whether the curve survives in all orders of the RG expansion or shrinks to a single point when the higher-order corrections are taken into account.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acef7c</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>disordered systems ; non-equilibrium behavior ; renormalization group ; self-organized criticality</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-09, Vol.56 (37), p.375002</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-e58235be2861e516c61a69aaa3e09e34281b8eb291ecb17d4d42acc1700809bb3</citedby><cites>FETCH-LOGICAL-c322t-e58235be2861e516c61a69aaa3e09e34281b8eb291ecb17d4d42acc1700809bb3</cites><orcidid>0000-0001-8402-9414 ; 0000-0003-1053-2476 ; 0000-0002-7631-9064 ; 0000-0001-7255-2320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acef7c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Antonov, N V</creatorcontrib><creatorcontrib>Kakin, P I</creatorcontrib><creatorcontrib>Lebedev, N M</creatorcontrib><creatorcontrib>Yu Luchin, A</creatorcontrib><title>Renormalization group analysis of a self-organized critical system: intrinsic anisotropy vs random environment</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We study a self-organized critical system coupled to an isotropic random fluid environment. The former is described by a strongly anisotropic continuous (coarse-grained) model introduced by Hwa and Kardar (1989 Phys. Rev. Lett. 62 1813; 1992 Phys. Rev. A 45 7002); the latter is described by the stirred Navier–Stokes equation due to Forster et al (1977 Phys. Rev. A 16 732). The full problem of two coupled stochastic equations is represented as a field-theoretic model, which is shown to be multiplicatively renormalizable. The corresponding renormalization group (RG) equations possess a semi-infinite curve of fixed points in the four-dimensional space of the model parameters. The whole curve is infrared attractive for realistic values of parameters; its endpoint corresponds to the purely isotropic regime where the original Hwa–Kardar nonlinearity becomes irrelevant. There, one is left with a simple advection of a passive scalar field by the external environment. The main critical dimensions are calculated to leading (one-loop) order (first terms in the ϵ = 4 − d expansion); some of them are exact in all orders. These dimensions remain the same along that curve, which makes it reasonable to interpret it as a single universality class. However, the correction exponents do vary along the curve. It is therefore not clear whether the curve survives in all orders of the RG expansion or shrinks to a single point when the higher-order corrections are taken into account.</description><subject>disordered systems</subject><subject>non-equilibrium behavior</subject><subject>renormalization group</subject><subject>self-organized criticality</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtqwzAQRUVpoWnafZf6gLrRyC-5uxL6gkChtGszlsdBwZaMpAScr29CSnZdzWW45y4OY_cgHkEotYAyh0SBhAVq6kp9wWbn1-U5Q3rNbkLYCJFnopIzZr_IOj9gb_YYjbN87d125Gixn4IJ3HUceaC-S5xfozV7arn2JhqNPQ9TiDQ8cWOjNzYYfeBMcNG7ceK7wD3a1g2c7M54Zwey8ZZdddgHuvu7c_bz-vK9fE9Wn28fy-dVolMpY0K5kmnekFQFUA6FLgCLChFTEhWlmVTQKGpkBaQbKNuszSRqDaUQSlRNk86ZOO1q70Lw1NWjNwP6qQZRH33VRyH1UU598nVAHk6IcWO9cVt_UBD-r_8CuWdwWA</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Antonov, N V</creator><creator>Kakin, P I</creator><creator>Lebedev, N M</creator><creator>Yu Luchin, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8402-9414</orcidid><orcidid>https://orcid.org/0000-0003-1053-2476</orcidid><orcidid>https://orcid.org/0000-0002-7631-9064</orcidid><orcidid>https://orcid.org/0000-0001-7255-2320</orcidid></search><sort><creationdate>20230915</creationdate><title>Renormalization group analysis of a self-organized critical system: intrinsic anisotropy vs random environment</title><author>Antonov, N V ; Kakin, P I ; Lebedev, N M ; Yu Luchin, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e58235be2861e516c61a69aaa3e09e34281b8eb291ecb17d4d42acc1700809bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>disordered systems</topic><topic>non-equilibrium behavior</topic><topic>renormalization group</topic><topic>self-organized criticality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonov, N V</creatorcontrib><creatorcontrib>Kakin, P I</creatorcontrib><creatorcontrib>Lebedev, N M</creatorcontrib><creatorcontrib>Yu Luchin, A</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonov, N V</au><au>Kakin, P I</au><au>Lebedev, N M</au><au>Yu Luchin, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalization group analysis of a self-organized critical system: intrinsic anisotropy vs random environment</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-09-15</date><risdate>2023</risdate><volume>56</volume><issue>37</issue><spage>375002</spage><pages>375002-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We study a self-organized critical system coupled to an isotropic random fluid environment. The former is described by a strongly anisotropic continuous (coarse-grained) model introduced by Hwa and Kardar (1989 Phys. Rev. Lett. 62 1813; 1992 Phys. Rev. A 45 7002); the latter is described by the stirred Navier–Stokes equation due to Forster et al (1977 Phys. Rev. A 16 732). The full problem of two coupled stochastic equations is represented as a field-theoretic model, which is shown to be multiplicatively renormalizable. The corresponding renormalization group (RG) equations possess a semi-infinite curve of fixed points in the four-dimensional space of the model parameters. The whole curve is infrared attractive for realistic values of parameters; its endpoint corresponds to the purely isotropic regime where the original Hwa–Kardar nonlinearity becomes irrelevant. There, one is left with a simple advection of a passive scalar field by the external environment. The main critical dimensions are calculated to leading (one-loop) order (first terms in the ϵ = 4 − d expansion); some of them are exact in all orders. These dimensions remain the same along that curve, which makes it reasonable to interpret it as a single universality class. However, the correction exponents do vary along the curve. It is therefore not clear whether the curve survives in all orders of the RG expansion or shrinks to a single point when the higher-order corrections are taken into account.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acef7c</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8402-9414</orcidid><orcidid>https://orcid.org/0000-0003-1053-2476</orcidid><orcidid>https://orcid.org/0000-0002-7631-9064</orcidid><orcidid>https://orcid.org/0000-0001-7255-2320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2023-09, Vol.56 (37), p.375002
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_acef7c
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects disordered systems
non-equilibrium behavior
renormalization group
self-organized criticality
title Renormalization group analysis of a self-organized critical system: intrinsic anisotropy vs random environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalization%20group%20analysis%20of%20a%20self-organized%20critical%20system:%20intrinsic%20anisotropy%20vs%20random%20environment&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Antonov,%20N%20V&rft.date=2023-09-15&rft.volume=56&rft.issue=37&rft.spage=375002&rft.pages=375002-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acef7c&rft_dat=%3Ciop_cross%3Eaacef7c%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true