Curves in quantum state space, geometric phases, and the brachistophase

Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-07, Vol.56 (28), p.285301
Hauptverfasser: Chryssomalakos, C, Flores-Delgado, A G, Guzmán-González, E, Hanotel, L, Serrano-Ensástiga, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 28
container_start_page 285301
container_title Journal of physics. A, Mathematical and theoretical
container_volume 56
creator Chryssomalakos, C
Flores-Delgado, A G
Guzmán-González, E
Hanotel, L
Serrano-Ensástiga, E
description Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the brachistophase problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time τ —we find an analytical solution for all spin values, valid for small τ . For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.
doi_str_mv 10.1088/1751-8121/acdcd2
format Article
fullrecord <record><control><sourceid>liege_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_acdcd2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_orbi_ulg_ac_be_2268_307291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-76ed8a1d5e857775a9420dcbd899a506c826969ba138e73fe337ec093aa8f4e33</originalsourceid><addsrcrecordid>eNp1kDtPwzAQgC0EEqWwM_oHNNSPJrZHVEGLVIkFZutiX1pXbRLspBL_npSgbkz3_E66j5BHzp4403rOVc4zzQWfg_POiysyubSuLzmXt-QupT1j-YIZMSGrZR9PmGio6VcPddcfaeqgQ5pacDijW2yO2MXgaLuDhGlGofa02yEtI7hdSF3zO7gnNxUcEj78xSn5fH35WK6zzfvqbfm8yZzkpstUgV4D9znqXCmVg1kI5l3ptTGQs8JpUZjClMClRiUrlFKhY0YC6GoxVFMix7uHgFu0TSyDPQnbQBjz_rC14GyJVohCW8mUMHyg2Ei52KQUsbJtDEeI35Yze9Znz37s2ZUd9Q3IbERC09p908d6eOv_9R8lj3GV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Curves in quantum state space, geometric phases, and the brachistophase</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chryssomalakos, C ; Flores-Delgado, A G ; Guzmán-González, E ; Hanotel, L ; Serrano-Ensástiga, E</creator><creatorcontrib>Chryssomalakos, C ; Flores-Delgado, A G ; Guzmán-González, E ; Hanotel, L ; Serrano-Ensástiga, E</creatorcontrib><description>Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the brachistophase problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time τ —we find an analytical solution for all spin values, valid for small τ . For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.</description><identifier>ISSN: 1751-8113</identifier><identifier>ISSN: 1751-8121</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acdcd2</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>geometric phases ; Mathematical Physics ; Physical, chemical, mathematical &amp; earth Sciences ; Physics ; Physics and Astronomy (all) ; Physique ; Physique, chimie, mathématiques &amp; sciences de la terre ; quantum kinematics ; quantum spin states</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-07, Vol.56 (28), p.285301</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-76ed8a1d5e857775a9420dcbd899a506c826969ba138e73fe337ec093aa8f4e33</cites><orcidid>0000-0002-6676-4762 ; 0000-0003-4112-3536 ; 0000-0002-1548-0321 ; 0000-0001-6146-3787 ; 0000-0001-8801-5810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acdcd2/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,315,781,785,886,27929,27930,53851,53898</link.rule.ids></links><search><creatorcontrib>Chryssomalakos, C</creatorcontrib><creatorcontrib>Flores-Delgado, A G</creatorcontrib><creatorcontrib>Guzmán-González, E</creatorcontrib><creatorcontrib>Hanotel, L</creatorcontrib><creatorcontrib>Serrano-Ensástiga, E</creatorcontrib><title>Curves in quantum state space, geometric phases, and the brachistophase</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the brachistophase problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time τ —we find an analytical solution for all spin values, valid for small τ . For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.</description><subject>geometric phases</subject><subject>Mathematical Physics</subject><subject>Physical, chemical, mathematical &amp; earth Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy (all)</subject><subject>Physique</subject><subject>Physique, chimie, mathématiques &amp; sciences de la terre</subject><subject>quantum kinematics</subject><subject>quantum spin states</subject><issn>1751-8113</issn><issn>1751-8121</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kDtPwzAQgC0EEqWwM_oHNNSPJrZHVEGLVIkFZutiX1pXbRLspBL_npSgbkz3_E66j5BHzp4403rOVc4zzQWfg_POiysyubSuLzmXt-QupT1j-YIZMSGrZR9PmGio6VcPddcfaeqgQ5pacDijW2yO2MXgaLuDhGlGofa02yEtI7hdSF3zO7gnNxUcEj78xSn5fH35WK6zzfvqbfm8yZzkpstUgV4D9znqXCmVg1kI5l3ptTGQs8JpUZjClMClRiUrlFKhY0YC6GoxVFMix7uHgFu0TSyDPQnbQBjz_rC14GyJVohCW8mUMHyg2Ei52KQUsbJtDEeI35Yze9Znz37s2ZUd9Q3IbERC09p908d6eOv_9R8lj3GV</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Chryssomalakos, C</creator><creator>Flores-Delgado, A G</creator><creator>Guzmán-González, E</creator><creator>Hanotel, L</creator><creator>Serrano-Ensástiga, E</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0002-6676-4762</orcidid><orcidid>https://orcid.org/0000-0003-4112-3536</orcidid><orcidid>https://orcid.org/0000-0002-1548-0321</orcidid><orcidid>https://orcid.org/0000-0001-6146-3787</orcidid><orcidid>https://orcid.org/0000-0001-8801-5810</orcidid></search><sort><creationdate>20230714</creationdate><title>Curves in quantum state space, geometric phases, and the brachistophase</title><author>Chryssomalakos, C ; Flores-Delgado, A G ; Guzmán-González, E ; Hanotel, L ; Serrano-Ensástiga, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-76ed8a1d5e857775a9420dcbd899a506c826969ba138e73fe337ec093aa8f4e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>geometric phases</topic><topic>Mathematical Physics</topic><topic>Physical, chemical, mathematical &amp; earth Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy (all)</topic><topic>Physique</topic><topic>Physique, chimie, mathématiques &amp; sciences de la terre</topic><topic>quantum kinematics</topic><topic>quantum spin states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chryssomalakos, C</creatorcontrib><creatorcontrib>Flores-Delgado, A G</creatorcontrib><creatorcontrib>Guzmán-González, E</creatorcontrib><creatorcontrib>Hanotel, L</creatorcontrib><creatorcontrib>Serrano-Ensástiga, E</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chryssomalakos, C</au><au>Flores-Delgado, A G</au><au>Guzmán-González, E</au><au>Hanotel, L</au><au>Serrano-Ensástiga, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curves in quantum state space, geometric phases, and the brachistophase</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-07-14</date><risdate>2023</risdate><volume>56</volume><issue>28</issue><spage>285301</spage><pages>285301-</pages><issn>1751-8113</issn><issn>1751-8121</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the brachistophase problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time τ —we find an analytical solution for all spin values, valid for small τ . For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acdcd2</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6676-4762</orcidid><orcidid>https://orcid.org/0000-0003-4112-3536</orcidid><orcidid>https://orcid.org/0000-0002-1548-0321</orcidid><orcidid>https://orcid.org/0000-0001-6146-3787</orcidid><orcidid>https://orcid.org/0000-0001-8801-5810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2023-07, Vol.56 (28), p.285301
issn 1751-8113
1751-8121
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_acdcd2
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects geometric phases
Mathematical Physics
Physical, chemical, mathematical & earth Sciences
Physics
Physics and Astronomy (all)
Physique
Physique, chimie, mathématiques & sciences de la terre
quantum kinematics
quantum spin states
title Curves in quantum state space, geometric phases, and the brachistophase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-liege_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curves%20in%20quantum%20state%20space,%20geometric%20phases,%20and%20the%20brachistophase&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Chryssomalakos,%20C&rft.date=2023-07-14&rft.volume=56&rft.issue=28&rft.spage=285301&rft.pages=285301-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acdcd2&rft_dat=%3Cliege_cross%3Eoai_orbi_ulg_ac_be_2268_307291%3C/liege_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true