Curves in quantum state space, geometric phases, and the brachistophase
Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression f...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-07, Vol.56 (28), p.285301 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 28 |
container_start_page | 285301 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 56 |
creator | Chryssomalakos, C Flores-Delgado, A G Guzmán-González, E Hanotel, L Serrano-Ensástiga, E |
description | Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the
brachistophase
problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time
τ
—we find an analytical solution for all spin values, valid for small
τ
. For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere. |
doi_str_mv | 10.1088/1751-8121/acdcd2 |
format | Article |
fullrecord | <record><control><sourceid>liege_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_acdcd2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_orbi_ulg_ac_be_2268_307291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-76ed8a1d5e857775a9420dcbd899a506c826969ba138e73fe337ec093aa8f4e33</originalsourceid><addsrcrecordid>eNp1kDtPwzAQgC0EEqWwM_oHNNSPJrZHVEGLVIkFZutiX1pXbRLspBL_npSgbkz3_E66j5BHzp4403rOVc4zzQWfg_POiysyubSuLzmXt-QupT1j-YIZMSGrZR9PmGio6VcPddcfaeqgQ5pacDijW2yO2MXgaLuDhGlGofa02yEtI7hdSF3zO7gnNxUcEj78xSn5fH35WK6zzfvqbfm8yZzkpstUgV4D9znqXCmVg1kI5l3ptTGQs8JpUZjClMClRiUrlFKhY0YC6GoxVFMix7uHgFu0TSyDPQnbQBjz_rC14GyJVohCW8mUMHyg2Ei52KQUsbJtDEeI35Yze9Znz37s2ZUd9Q3IbERC09p908d6eOv_9R8lj3GV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Curves in quantum state space, geometric phases, and the brachistophase</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chryssomalakos, C ; Flores-Delgado, A G ; Guzmán-González, E ; Hanotel, L ; Serrano-Ensástiga, E</creator><creatorcontrib>Chryssomalakos, C ; Flores-Delgado, A G ; Guzmán-González, E ; Hanotel, L ; Serrano-Ensástiga, E</creatorcontrib><description>Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the
brachistophase
problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time
τ
—we find an analytical solution for all spin values, valid for small
τ
. For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.</description><identifier>ISSN: 1751-8113</identifier><identifier>ISSN: 1751-8121</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acdcd2</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>geometric phases ; Mathematical Physics ; Physical, chemical, mathematical & earth Sciences ; Physics ; Physics and Astronomy (all) ; Physique ; Physique, chimie, mathématiques & sciences de la terre ; quantum kinematics ; quantum spin states</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-07, Vol.56 (28), p.285301</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-76ed8a1d5e857775a9420dcbd899a506c826969ba138e73fe337ec093aa8f4e33</cites><orcidid>0000-0002-6676-4762 ; 0000-0003-4112-3536 ; 0000-0002-1548-0321 ; 0000-0001-6146-3787 ; 0000-0001-8801-5810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acdcd2/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,315,781,785,886,27929,27930,53851,53898</link.rule.ids></links><search><creatorcontrib>Chryssomalakos, C</creatorcontrib><creatorcontrib>Flores-Delgado, A G</creatorcontrib><creatorcontrib>Guzmán-González, E</creatorcontrib><creatorcontrib>Hanotel, L</creatorcontrib><creatorcontrib>Serrano-Ensástiga, E</creatorcontrib><title>Curves in quantum state space, geometric phases, and the brachistophase</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the
brachistophase
problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time
τ
—we find an analytical solution for all spin values, valid for small
τ
. For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.</description><subject>geometric phases</subject><subject>Mathematical Physics</subject><subject>Physical, chemical, mathematical & earth Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy (all)</subject><subject>Physique</subject><subject>Physique, chimie, mathématiques & sciences de la terre</subject><subject>quantum kinematics</subject><subject>quantum spin states</subject><issn>1751-8113</issn><issn>1751-8121</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kDtPwzAQgC0EEqWwM_oHNNSPJrZHVEGLVIkFZutiX1pXbRLspBL_npSgbkz3_E66j5BHzp4403rOVc4zzQWfg_POiysyubSuLzmXt-QupT1j-YIZMSGrZR9PmGio6VcPddcfaeqgQ5pacDijW2yO2MXgaLuDhGlGofa02yEtI7hdSF3zO7gnNxUcEj78xSn5fH35WK6zzfvqbfm8yZzkpstUgV4D9znqXCmVg1kI5l3ptTGQs8JpUZjClMClRiUrlFKhY0YC6GoxVFMix7uHgFu0TSyDPQnbQBjz_rC14GyJVohCW8mUMHyg2Ei52KQUsbJtDEeI35Yze9Znz37s2ZUd9Q3IbERC09p908d6eOv_9R8lj3GV</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Chryssomalakos, C</creator><creator>Flores-Delgado, A G</creator><creator>Guzmán-González, E</creator><creator>Hanotel, L</creator><creator>Serrano-Ensástiga, E</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0002-6676-4762</orcidid><orcidid>https://orcid.org/0000-0003-4112-3536</orcidid><orcidid>https://orcid.org/0000-0002-1548-0321</orcidid><orcidid>https://orcid.org/0000-0001-6146-3787</orcidid><orcidid>https://orcid.org/0000-0001-8801-5810</orcidid></search><sort><creationdate>20230714</creationdate><title>Curves in quantum state space, geometric phases, and the brachistophase</title><author>Chryssomalakos, C ; Flores-Delgado, A G ; Guzmán-González, E ; Hanotel, L ; Serrano-Ensástiga, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-76ed8a1d5e857775a9420dcbd899a506c826969ba138e73fe337ec093aa8f4e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>geometric phases</topic><topic>Mathematical Physics</topic><topic>Physical, chemical, mathematical & earth Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy (all)</topic><topic>Physique</topic><topic>Physique, chimie, mathématiques & sciences de la terre</topic><topic>quantum kinematics</topic><topic>quantum spin states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chryssomalakos, C</creatorcontrib><creatorcontrib>Flores-Delgado, A G</creatorcontrib><creatorcontrib>Guzmán-González, E</creatorcontrib><creatorcontrib>Hanotel, L</creatorcontrib><creatorcontrib>Serrano-Ensástiga, E</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chryssomalakos, C</au><au>Flores-Delgado, A G</au><au>Guzmán-González, E</au><au>Hanotel, L</au><au>Serrano-Ensástiga, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curves in quantum state space, geometric phases, and the brachistophase</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-07-14</date><risdate>2023</risdate><volume>56</volume><issue>28</issue><spage>285301</spage><pages>285301-</pages><issn>1751-8113</issn><issn>1751-8121</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the
brachistophase
problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time
τ
—we find an analytical solution for all spin values, valid for small
τ
. For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acdcd2</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6676-4762</orcidid><orcidid>https://orcid.org/0000-0003-4112-3536</orcidid><orcidid>https://orcid.org/0000-0002-1548-0321</orcidid><orcidid>https://orcid.org/0000-0001-6146-3787</orcidid><orcidid>https://orcid.org/0000-0001-8801-5810</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2023-07, Vol.56 (28), p.285301 |
issn | 1751-8113 1751-8121 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_acdcd2 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | geometric phases Mathematical Physics Physical, chemical, mathematical & earth Sciences Physics Physics and Astronomy (all) Physique Physique, chimie, mathématiques & sciences de la terre quantum kinematics quantum spin states |
title | Curves in quantum state space, geometric phases, and the brachistophase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-liege_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curves%20in%20quantum%20state%20space,%20geometric%20phases,%20and%20the%20brachistophase&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Chryssomalakos,%20C&rft.date=2023-07-14&rft.volume=56&rft.issue=28&rft.spage=285301&rft.pages=285301-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acdcd2&rft_dat=%3Cliege_cross%3Eoai_orbi_ulg_ac_be_2268_307291%3C/liege_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |