Integrability and trajectory confinement in -symmetric waveguide arrays
We consider -symmetric ring-like arrays of optical waveguides with purely nonlinear gain and loss. Regardless of the value of the gain–loss coefficient, these systems are protected from spontaneous -symmetry breaking. If the nonhermitian part of the array matrix has cross-compensating structure, the...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-04, Vol.56 (16), p.165701 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 165701 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 56 |
creator | Barashenkov, I V Smuts, Frank Chernyavsky, Alexander |
description | We consider
-symmetric ring-like arrays of optical waveguides with purely nonlinear gain and loss. Regardless of the value of the gain–loss coefficient, these systems are protected from spontaneous
-symmetry breaking. If the nonhermitian part of the array matrix has cross-compensating structure, the total power in such a system remains bounded—or even constant—at all times. We identify two-, three-, and four-waveguide arrays with cross-compensatory nonlinear gain and loss that constitute completely integrable Hamiltonian systems. |
doi_str_mv | 10.1088/1751-8121/acc3ce |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_acc3ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacc3ce</sourcerecordid><originalsourceid>FETCH-LOGICAL-c167e-5797b8c0b5d6d786b130aa3ad27e9750fd0bb02c6c7d73a142ca4baa613fac5a3</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqVw5-gPINSO4zg5ogpKpUpc4Gyt107lqHEqOwXl72kU1BunHa3mrXaGkEfOnjmrqhVXkmcVz_kKEAW6K7K4rK4vmotbcpdSy5gsWJ0vyGYbBrePYPzBDyOFYOkQoXU49HGk2IfGB9e5MFAfaJbGrnND9Eh_4NvtT946CjHCmO7JTQOH5B7-5pJ8vb1-rt-z3cdmu37ZZchL5TKpamUqZEba0qqqNFwwAAE2V65WkjWWGcNyLFFZJYAXOUJhAEouGkAJYknYfBdjn1J0jT5G30EcNWd6KkJPSfWUWs9FnJGnGfH9Ubf9KYbzg__bfwGqiWGy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrability and trajectory confinement in -symmetric waveguide arrays</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Barashenkov, I V ; Smuts, Frank ; Chernyavsky, Alexander</creator><creatorcontrib>Barashenkov, I V ; Smuts, Frank ; Chernyavsky, Alexander</creatorcontrib><description>We consider
-symmetric ring-like arrays of optical waveguides with purely nonlinear gain and loss. Regardless of the value of the gain–loss coefficient, these systems are protected from spontaneous
-symmetry breaking. If the nonhermitian part of the array matrix has cross-compensating structure, the total power in such a system remains bounded—or even constant—at all times. We identify two-, three-, and four-waveguide arrays with cross-compensatory nonlinear gain and loss that constitute completely integrable Hamiltonian systems.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acc3ce</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Hamiltonian systems ; integrable quadrimer ; integrable trimer ; Liouville integrability ; nonlinear Schrödinger dimer ; parity-time symmetry</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-04, Vol.56 (16), p.165701</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c167e-5797b8c0b5d6d786b130aa3ad27e9750fd0bb02c6c7d73a142ca4baa613fac5a3</citedby><cites>FETCH-LOGICAL-c167e-5797b8c0b5d6d786b130aa3ad27e9750fd0bb02c6c7d73a142ca4baa613fac5a3</cites><orcidid>0000-0002-8534-9935 ; 0000-0002-3554-4599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acc3ce/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Barashenkov, I V</creatorcontrib><creatorcontrib>Smuts, Frank</creatorcontrib><creatorcontrib>Chernyavsky, Alexander</creatorcontrib><title>Integrability and trajectory confinement in -symmetric waveguide arrays</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We consider
-symmetric ring-like arrays of optical waveguides with purely nonlinear gain and loss. Regardless of the value of the gain–loss coefficient, these systems are protected from spontaneous
-symmetry breaking. If the nonhermitian part of the array matrix has cross-compensating structure, the total power in such a system remains bounded—or even constant—at all times. We identify two-, three-, and four-waveguide arrays with cross-compensatory nonlinear gain and loss that constitute completely integrable Hamiltonian systems.</description><subject>Hamiltonian systems</subject><subject>integrable quadrimer</subject><subject>integrable trimer</subject><subject>Liouville integrability</subject><subject>nonlinear Schrödinger dimer</subject><subject>parity-time symmetry</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kMFOwzAQRC0EEqVw5-gPINSO4zg5ogpKpUpc4Gyt107lqHEqOwXl72kU1BunHa3mrXaGkEfOnjmrqhVXkmcVz_kKEAW6K7K4rK4vmotbcpdSy5gsWJ0vyGYbBrePYPzBDyOFYOkQoXU49HGk2IfGB9e5MFAfaJbGrnND9Eh_4NvtT946CjHCmO7JTQOH5B7-5pJ8vb1-rt-z3cdmu37ZZchL5TKpamUqZEba0qqqNFwwAAE2V65WkjWWGcNyLFFZJYAXOUJhAEouGkAJYknYfBdjn1J0jT5G30EcNWd6KkJPSfWUWs9FnJGnGfH9Ubf9KYbzg__bfwGqiWGy</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Barashenkov, I V</creator><creator>Smuts, Frank</creator><creator>Chernyavsky, Alexander</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8534-9935</orcidid><orcidid>https://orcid.org/0000-0002-3554-4599</orcidid></search><sort><creationdate>20230421</creationdate><title>Integrability and trajectory confinement in -symmetric waveguide arrays</title><author>Barashenkov, I V ; Smuts, Frank ; Chernyavsky, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c167e-5797b8c0b5d6d786b130aa3ad27e9750fd0bb02c6c7d73a142ca4baa613fac5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Hamiltonian systems</topic><topic>integrable quadrimer</topic><topic>integrable trimer</topic><topic>Liouville integrability</topic><topic>nonlinear Schrödinger dimer</topic><topic>parity-time symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barashenkov, I V</creatorcontrib><creatorcontrib>Smuts, Frank</creatorcontrib><creatorcontrib>Chernyavsky, Alexander</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barashenkov, I V</au><au>Smuts, Frank</au><au>Chernyavsky, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrability and trajectory confinement in -symmetric waveguide arrays</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-04-21</date><risdate>2023</risdate><volume>56</volume><issue>16</issue><spage>165701</spage><pages>165701-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We consider
-symmetric ring-like arrays of optical waveguides with purely nonlinear gain and loss. Regardless of the value of the gain–loss coefficient, these systems are protected from spontaneous
-symmetry breaking. If the nonhermitian part of the array matrix has cross-compensating structure, the total power in such a system remains bounded—or even constant—at all times. We identify two-, three-, and four-waveguide arrays with cross-compensatory nonlinear gain and loss that constitute completely integrable Hamiltonian systems.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acc3ce</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8534-9935</orcidid><orcidid>https://orcid.org/0000-0002-3554-4599</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2023-04, Vol.56 (16), p.165701 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_acc3ce |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Hamiltonian systems integrable quadrimer integrable trimer Liouville integrability nonlinear Schrödinger dimer parity-time symmetry |
title | Integrability and trajectory confinement in -symmetric waveguide arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrability%20and%20trajectory%20confinement%20in%20-symmetric%20waveguide%20arrays&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Barashenkov,%20I%20V&rft.date=2023-04-21&rft.volume=56&rft.issue=16&rft.spage=165701&rft.pages=165701-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acc3ce&rft_dat=%3Ciop_cross%3Eaacc3ce%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |