Lattice conformation of theta-curves accompanied with Brunnian property

A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-10, Vol.55 (43), p.435207
Hauptverfasser: Kim, Hyoungjun, Lee, Hwa Jeong, No, Sungjong, Oh, Seungsang, Yoo, Hyungkee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 43
container_start_page 435207
container_title Journal of physics. A, Mathematical and theoretical
container_volume 55
creator Kim, Hyoungjun
Lee, Hwa Jeong
No, Sungjong
Oh, Seungsang
Yoo, Hyungkee
description A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the property that if we remove any one among three edges, then the remaining knot can be laid in the plane without crossings. We focus on the rigidity of polymer chains with the Brunnian theta-curve shape by using the lattice stick number which is the minimal number of sticks glued end-to-end that are necessary to construct the theta-curve in the cubic lattice. The authors have already shown in a previous research that at least 15 lattice sticks are needed to construct Brunnian theta-curves. In this paper, we improve the lower bound of the lattice stick number for Brunnian theta-curves to 16.
doi_str_mv 10.1088/1751-8121/ac845a
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ac845a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac845a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-17333e89fe8405ea9c1f8eec81db382bb8d10ca08560ea6f7d9958dfe7b7c9a33</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrd495uTJtclm02SPWmwVCl70HN5mX2iKmyzZVOnf27LSkwgP3mOYecwMIbecPXCm9YwryQvNSz4DqysJZ2Rygs5PNxeX5GoYtozJitXlhKzWkLO3SG0MLqYOso-BRkfzBjMUdpe-cKBgbex6CB5b-u3zhj6lXQgeAu1T7DHl_TW5cPA54M3vnpKP5fP74qVYv61eF4_rwpbzKhdcCSFQ1w51xSRCbbnTiFbzthG6bBrdcmaBaTlnCHOn2rqWunWoGmVrEGJK2PjXpjgMCZ3pk-8g7Q1n5liEOSY1x9RmLOIguR8lPvZmG3cpHAz-R7_7gw5GSlOJw8iSKdO3TvwAiVttHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice conformation of theta-curves accompanied with Brunnian property</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kim, Hyoungjun ; Lee, Hwa Jeong ; No, Sungjong ; Oh, Seungsang ; Yoo, Hyungkee</creator><creatorcontrib>Kim, Hyoungjun ; Lee, Hwa Jeong ; No, Sungjong ; Oh, Seungsang ; Yoo, Hyungkee</creatorcontrib><description>A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the property that if we remove any one among three edges, then the remaining knot can be laid in the plane without crossings. We focus on the rigidity of polymer chains with the Brunnian theta-curve shape by using the lattice stick number which is the minimal number of sticks glued end-to-end that are necessary to construct the theta-curve in the cubic lattice. The authors have already shown in a previous research that at least 15 lattice sticks are needed to construct Brunnian theta-curves. In this paper, we improve the lower bound of the lattice stick number for Brunnian theta-curves to 16.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac845a</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Brunnian ; lattice stick number ; theta-curve</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-10, Vol.55 (43), p.435207</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-17333e89fe8405ea9c1f8eec81db382bb8d10ca08560ea6f7d9958dfe7b7c9a33</cites><orcidid>0000-0003-3393-1891 ; 0000-0003-4975-9977 ; 0000-0002-6083-3165 ; 0000-0001-9604-7134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac845a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27915,27916,53837,53884</link.rule.ids></links><search><creatorcontrib>Kim, Hyoungjun</creatorcontrib><creatorcontrib>Lee, Hwa Jeong</creatorcontrib><creatorcontrib>No, Sungjong</creatorcontrib><creatorcontrib>Oh, Seungsang</creatorcontrib><creatorcontrib>Yoo, Hyungkee</creatorcontrib><title>Lattice conformation of theta-curves accompanied with Brunnian property</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the property that if we remove any one among three edges, then the remaining knot can be laid in the plane without crossings. We focus on the rigidity of polymer chains with the Brunnian theta-curve shape by using the lattice stick number which is the minimal number of sticks glued end-to-end that are necessary to construct the theta-curve in the cubic lattice. The authors have already shown in a previous research that at least 15 lattice sticks are needed to construct Brunnian theta-curves. In this paper, we improve the lower bound of the lattice stick number for Brunnian theta-curves to 16.</description><subject>Brunnian</subject><subject>lattice stick number</subject><subject>theta-curve</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrd495uTJtclm02SPWmwVCl70HN5mX2iKmyzZVOnf27LSkwgP3mOYecwMIbecPXCm9YwryQvNSz4DqysJZ2Rygs5PNxeX5GoYtozJitXlhKzWkLO3SG0MLqYOso-BRkfzBjMUdpe-cKBgbex6CB5b-u3zhj6lXQgeAu1T7DHl_TW5cPA54M3vnpKP5fP74qVYv61eF4_rwpbzKhdcCSFQ1w51xSRCbbnTiFbzthG6bBrdcmaBaTlnCHOn2rqWunWoGmVrEGJK2PjXpjgMCZ3pk-8g7Q1n5liEOSY1x9RmLOIguR8lPvZmG3cpHAz-R7_7gw5GSlOJw8iSKdO3TvwAiVttHg</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Kim, Hyoungjun</creator><creator>Lee, Hwa Jeong</creator><creator>No, Sungjong</creator><creator>Oh, Seungsang</creator><creator>Yoo, Hyungkee</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3393-1891</orcidid><orcidid>https://orcid.org/0000-0003-4975-9977</orcidid><orcidid>https://orcid.org/0000-0002-6083-3165</orcidid><orcidid>https://orcid.org/0000-0001-9604-7134</orcidid></search><sort><creationdate>20221028</creationdate><title>Lattice conformation of theta-curves accompanied with Brunnian property</title><author>Kim, Hyoungjun ; Lee, Hwa Jeong ; No, Sungjong ; Oh, Seungsang ; Yoo, Hyungkee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-17333e89fe8405ea9c1f8eec81db382bb8d10ca08560ea6f7d9958dfe7b7c9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brunnian</topic><topic>lattice stick number</topic><topic>theta-curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyoungjun</creatorcontrib><creatorcontrib>Lee, Hwa Jeong</creatorcontrib><creatorcontrib>No, Sungjong</creatorcontrib><creatorcontrib>Oh, Seungsang</creatorcontrib><creatorcontrib>Yoo, Hyungkee</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyoungjun</au><au>Lee, Hwa Jeong</au><au>No, Sungjong</au><au>Oh, Seungsang</au><au>Yoo, Hyungkee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice conformation of theta-curves accompanied with Brunnian property</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>55</volume><issue>43</issue><spage>435207</spage><pages>435207-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the property that if we remove any one among three edges, then the remaining knot can be laid in the plane without crossings. We focus on the rigidity of polymer chains with the Brunnian theta-curve shape by using the lattice stick number which is the minimal number of sticks glued end-to-end that are necessary to construct the theta-curve in the cubic lattice. The authors have already shown in a previous research that at least 15 lattice sticks are needed to construct Brunnian theta-curves. In this paper, we improve the lower bound of the lattice stick number for Brunnian theta-curves to 16.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac845a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3393-1891</orcidid><orcidid>https://orcid.org/0000-0003-4975-9977</orcidid><orcidid>https://orcid.org/0000-0002-6083-3165</orcidid><orcidid>https://orcid.org/0000-0001-9604-7134</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2022-10, Vol.55 (43), p.435207
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ac845a
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Brunnian
lattice stick number
theta-curve
title Lattice conformation of theta-curves accompanied with Brunnian property
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20conformation%20of%20theta-curves%20accompanied%20with%20Brunnian%20property&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Kim,%20Hyoungjun&rft.date=2022-10-28&rft.volume=55&rft.issue=43&rft.spage=435207&rft.pages=435207-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac845a&rft_dat=%3Ciop_cross%3Eaac845a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true