Lattice conformation of theta-curves accompanied with Brunnian property
A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the prop...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-10, Vol.55 (43), p.435207 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 43 |
container_start_page | 435207 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 55 |
creator | Kim, Hyoungjun Lee, Hwa Jeong No, Sungjong Oh, Seungsang Yoo, Hyungkee |
description | A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the property that if we remove any one among three edges, then the remaining knot can be laid in the plane without crossings. We focus on the rigidity of polymer chains with the Brunnian theta-curve shape by using the lattice stick number which is the minimal number of sticks glued end-to-end that are necessary to construct the theta-curve in the cubic lattice. The authors have already shown in a previous research that at least 15 lattice sticks are needed to construct Brunnian theta-curves. In this paper, we improve the lower bound of the lattice stick number for Brunnian theta-curves to 16. |
doi_str_mv | 10.1088/1751-8121/ac845a |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ac845a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac845a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-17333e89fe8405ea9c1f8eec81db382bb8d10ca08560ea6f7d9958dfe7b7c9a33</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrd495uTJtclm02SPWmwVCl70HN5mX2iKmyzZVOnf27LSkwgP3mOYecwMIbecPXCm9YwryQvNSz4DqysJZ2Rygs5PNxeX5GoYtozJitXlhKzWkLO3SG0MLqYOso-BRkfzBjMUdpe-cKBgbex6CB5b-u3zhj6lXQgeAu1T7DHl_TW5cPA54M3vnpKP5fP74qVYv61eF4_rwpbzKhdcCSFQ1w51xSRCbbnTiFbzthG6bBrdcmaBaTlnCHOn2rqWunWoGmVrEGJK2PjXpjgMCZ3pk-8g7Q1n5liEOSY1x9RmLOIguR8lPvZmG3cpHAz-R7_7gw5GSlOJw8iSKdO3TvwAiVttHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice conformation of theta-curves accompanied with Brunnian property</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kim, Hyoungjun ; Lee, Hwa Jeong ; No, Sungjong ; Oh, Seungsang ; Yoo, Hyungkee</creator><creatorcontrib>Kim, Hyoungjun ; Lee, Hwa Jeong ; No, Sungjong ; Oh, Seungsang ; Yoo, Hyungkee</creatorcontrib><description>A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the property that if we remove any one among three edges, then the remaining knot can be laid in the plane without crossings. We focus on the rigidity of polymer chains with the Brunnian theta-curve shape by using the lattice stick number which is the minimal number of sticks glued end-to-end that are necessary to construct the theta-curve in the cubic lattice. The authors have already shown in a previous research that at least 15 lattice sticks are needed to construct Brunnian theta-curves. In this paper, we improve the lower bound of the lattice stick number for Brunnian theta-curves to 16.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac845a</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Brunnian ; lattice stick number ; theta-curve</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-10, Vol.55 (43), p.435207</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-17333e89fe8405ea9c1f8eec81db382bb8d10ca08560ea6f7d9958dfe7b7c9a33</cites><orcidid>0000-0003-3393-1891 ; 0000-0003-4975-9977 ; 0000-0002-6083-3165 ; 0000-0001-9604-7134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac845a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27915,27916,53837,53884</link.rule.ids></links><search><creatorcontrib>Kim, Hyoungjun</creatorcontrib><creatorcontrib>Lee, Hwa Jeong</creatorcontrib><creatorcontrib>No, Sungjong</creatorcontrib><creatorcontrib>Oh, Seungsang</creatorcontrib><creatorcontrib>Yoo, Hyungkee</creatorcontrib><title>Lattice conformation of theta-curves accompanied with Brunnian property</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the property that if we remove any one among three edges, then the remaining knot can be laid in the plane without crossings. We focus on the rigidity of polymer chains with the Brunnian theta-curve shape by using the lattice stick number which is the minimal number of sticks glued end-to-end that are necessary to construct the theta-curve in the cubic lattice. The authors have already shown in a previous research that at least 15 lattice sticks are needed to construct Brunnian theta-curves. In this paper, we improve the lower bound of the lattice stick number for Brunnian theta-curves to 16.</description><subject>Brunnian</subject><subject>lattice stick number</subject><subject>theta-curve</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrd495uTJtclm02SPWmwVCl70HN5mX2iKmyzZVOnf27LSkwgP3mOYecwMIbecPXCm9YwryQvNSz4DqysJZ2Rygs5PNxeX5GoYtozJitXlhKzWkLO3SG0MLqYOso-BRkfzBjMUdpe-cKBgbex6CB5b-u3zhj6lXQgeAu1T7DHl_TW5cPA54M3vnpKP5fP74qVYv61eF4_rwpbzKhdcCSFQ1w51xSRCbbnTiFbzthG6bBrdcmaBaTlnCHOn2rqWunWoGmVrEGJK2PjXpjgMCZ3pk-8g7Q1n5liEOSY1x9RmLOIguR8lPvZmG3cpHAz-R7_7gw5GSlOJw8iSKdO3TvwAiVttHg</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Kim, Hyoungjun</creator><creator>Lee, Hwa Jeong</creator><creator>No, Sungjong</creator><creator>Oh, Seungsang</creator><creator>Yoo, Hyungkee</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3393-1891</orcidid><orcidid>https://orcid.org/0000-0003-4975-9977</orcidid><orcidid>https://orcid.org/0000-0002-6083-3165</orcidid><orcidid>https://orcid.org/0000-0001-9604-7134</orcidid></search><sort><creationdate>20221028</creationdate><title>Lattice conformation of theta-curves accompanied with Brunnian property</title><author>Kim, Hyoungjun ; Lee, Hwa Jeong ; No, Sungjong ; Oh, Seungsang ; Yoo, Hyungkee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-17333e89fe8405ea9c1f8eec81db382bb8d10ca08560ea6f7d9958dfe7b7c9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brunnian</topic><topic>lattice stick number</topic><topic>theta-curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyoungjun</creatorcontrib><creatorcontrib>Lee, Hwa Jeong</creatorcontrib><creatorcontrib>No, Sungjong</creatorcontrib><creatorcontrib>Oh, Seungsang</creatorcontrib><creatorcontrib>Yoo, Hyungkee</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyoungjun</au><au>Lee, Hwa Jeong</au><au>No, Sungjong</au><au>Oh, Seungsang</au><au>Yoo, Hyungkee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice conformation of theta-curves accompanied with Brunnian property</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>55</volume><issue>43</issue><spage>435207</spage><pages>435207-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>A theta-curve is an embedding of the Greek letter Θ shaped graph in three-dimensional space. This is a useful physical model for polymer chains since theta-curve motifs are often present in many circular proteins with internal bridges. A Brunnian theta-curve is a nontrivial theta-curve with the property that if we remove any one among three edges, then the remaining knot can be laid in the plane without crossings. We focus on the rigidity of polymer chains with the Brunnian theta-curve shape by using the lattice stick number which is the minimal number of sticks glued end-to-end that are necessary to construct the theta-curve in the cubic lattice. The authors have already shown in a previous research that at least 15 lattice sticks are needed to construct Brunnian theta-curves. In this paper, we improve the lower bound of the lattice stick number for Brunnian theta-curves to 16.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac845a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3393-1891</orcidid><orcidid>https://orcid.org/0000-0003-4975-9977</orcidid><orcidid>https://orcid.org/0000-0002-6083-3165</orcidid><orcidid>https://orcid.org/0000-0001-9604-7134</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2022-10, Vol.55 (43), p.435207 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_ac845a |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Brunnian lattice stick number theta-curve |
title | Lattice conformation of theta-curves accompanied with Brunnian property |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20conformation%20of%20theta-curves%20accompanied%20with%20Brunnian%20property&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Kim,%20Hyoungjun&rft.date=2022-10-28&rft.volume=55&rft.issue=43&rft.spage=435207&rft.pages=435207-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac845a&rft_dat=%3Ciop_cross%3Eaac845a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |