Algebro-geometric solutions to the lattice potential modified Kadomtsev–Petviashvili equation
Algebro-geometric solutions of the lattice potential modified Kadomtsev–Petviashvili (lpmKP) equation are constructed. A Darboux transformation of the Kaup–Newell spectral problem is employed to generate a Lax triad for the lpmKP equation, as well as to define commutative integrable symplectic maps...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-09, Vol.55 (37), p.375201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 37 |
container_start_page | 375201 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 55 |
creator | Xu, Xiaoxue Cao, Cewen Zhang, Da-jun |
description | Algebro-geometric solutions of the lattice potential modified Kadomtsev–Petviashvili (lpmKP) equation are constructed. A Darboux transformation of the Kaup–Newell spectral problem is employed to generate a Lax triad for the lpmKP equation, as well as to define commutative integrable symplectic maps which generate discrete flows of eigenfunctions. These maps share the same integrals with the finite-dimensional Hamiltonian system associated to the Kaup–Newell spectral problem. We investigate asymptotic behaviors of the Baker–Akhiezer functions and obtain their expression in terms of Riemann theta function. Finally, algebro-geometric solutions for the lpmKP equation are reconstructed from these Baker–Akhiezer functions. |
doi_str_mv | 10.1088/1751-8121/ac8252 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ac8252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac8252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-f569ad785b89075e9778cebbc94264581c0fb48daca0a918376557903b19c8e23</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqWwZ-kDEGo7cW0vq4o_UQkWsLYc56V1lcTBdiOx4w7ckJPQqKg7Vm_0NDMafQhdU3JLiZQzKjjNJGV0ZqxknJ2gyfF1etQ0P0cXMW4J4QVRbIL0ollDGXy2Bt9CCs7i6Jtdcr6LOHmcNoAbk5KzgHufoEvONLj1lasdVPjZVL5NEYafr-9XSIMzcTO4xmH42Jmx5BKd1aaJcPV3p-j9_u5t-ZitXh6elotVZpkkKav5XJlKSF5KRQQHJYS0UJZWFWxecEktqctCVsYaYhSVuZhzLhTJS6qsBJZPETn02uBjDFDrPrjWhE9NiR4B6ZGAHmnoA6B95OYQcb7XW78L3X7g__Zfz3NpXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebro-geometric solutions to the lattice potential modified Kadomtsev–Petviashvili equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xu, Xiaoxue ; Cao, Cewen ; Zhang, Da-jun</creator><creatorcontrib>Xu, Xiaoxue ; Cao, Cewen ; Zhang, Da-jun</creatorcontrib><description>Algebro-geometric solutions of the lattice potential modified Kadomtsev–Petviashvili (lpmKP) equation are constructed. A Darboux transformation of the Kaup–Newell spectral problem is employed to generate a Lax triad for the lpmKP equation, as well as to define commutative integrable symplectic maps which generate discrete flows of eigenfunctions. These maps share the same integrals with the finite-dimensional Hamiltonian system associated to the Kaup–Newell spectral problem. We investigate asymptotic behaviors of the Baker–Akhiezer functions and obtain their expression in terms of Riemann theta function. Finally, algebro-geometric solutions for the lpmKP equation are reconstructed from these Baker–Akhiezer functions.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac8252</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>algebro-geometric solution ; Baker–AkhiezerAkhiezer function ; Kaup–Newell spectral problem ; lattice potential modified Kadomtsev–Petviashvili equation</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-09, Vol.55 (37), p.375201</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-f569ad785b89075e9778cebbc94264581c0fb48daca0a918376557903b19c8e23</citedby><cites>FETCH-LOGICAL-c280t-f569ad785b89075e9778cebbc94264581c0fb48daca0a918376557903b19c8e23</cites><orcidid>0000-0002-1832-1211 ; 0000-0003-3691-4165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac8252/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Xu, Xiaoxue</creatorcontrib><creatorcontrib>Cao, Cewen</creatorcontrib><creatorcontrib>Zhang, Da-jun</creatorcontrib><title>Algebro-geometric solutions to the lattice potential modified Kadomtsev–Petviashvili equation</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Algebro-geometric solutions of the lattice potential modified Kadomtsev–Petviashvili (lpmKP) equation are constructed. A Darboux transformation of the Kaup–Newell spectral problem is employed to generate a Lax triad for the lpmKP equation, as well as to define commutative integrable symplectic maps which generate discrete flows of eigenfunctions. These maps share the same integrals with the finite-dimensional Hamiltonian system associated to the Kaup–Newell spectral problem. We investigate asymptotic behaviors of the Baker–Akhiezer functions and obtain their expression in terms of Riemann theta function. Finally, algebro-geometric solutions for the lpmKP equation are reconstructed from these Baker–Akhiezer functions.</description><subject>algebro-geometric solution</subject><subject>Baker–AkhiezerAkhiezer function</subject><subject>Kaup–Newell spectral problem</subject><subject>lattice potential modified Kadomtsev–Petviashvili equation</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqWwZ-kDEGo7cW0vq4o_UQkWsLYc56V1lcTBdiOx4w7ckJPQqKg7Vm_0NDMafQhdU3JLiZQzKjjNJGV0ZqxknJ2gyfF1etQ0P0cXMW4J4QVRbIL0ollDGXy2Bt9CCs7i6Jtdcr6LOHmcNoAbk5KzgHufoEvONLj1lasdVPjZVL5NEYafr-9XSIMzcTO4xmH42Jmx5BKd1aaJcPV3p-j9_u5t-ZitXh6elotVZpkkKav5XJlKSF5KRQQHJYS0UJZWFWxecEktqctCVsYaYhSVuZhzLhTJS6qsBJZPETn02uBjDFDrPrjWhE9NiR4B6ZGAHmnoA6B95OYQcb7XW78L3X7g__Zfz3NpXA</recordid><startdate>20220916</startdate><enddate>20220916</enddate><creator>Xu, Xiaoxue</creator><creator>Cao, Cewen</creator><creator>Zhang, Da-jun</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1832-1211</orcidid><orcidid>https://orcid.org/0000-0003-3691-4165</orcidid></search><sort><creationdate>20220916</creationdate><title>Algebro-geometric solutions to the lattice potential modified Kadomtsev–Petviashvili equation</title><author>Xu, Xiaoxue ; Cao, Cewen ; Zhang, Da-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-f569ad785b89075e9778cebbc94264581c0fb48daca0a918376557903b19c8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>algebro-geometric solution</topic><topic>Baker–AkhiezerAkhiezer function</topic><topic>Kaup–Newell spectral problem</topic><topic>lattice potential modified Kadomtsev–Petviashvili equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaoxue</creatorcontrib><creatorcontrib>Cao, Cewen</creatorcontrib><creatorcontrib>Zhang, Da-jun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaoxue</au><au>Cao, Cewen</au><au>Zhang, Da-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebro-geometric solutions to the lattice potential modified Kadomtsev–Petviashvili equation</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-09-16</date><risdate>2022</risdate><volume>55</volume><issue>37</issue><spage>375201</spage><pages>375201-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Algebro-geometric solutions of the lattice potential modified Kadomtsev–Petviashvili (lpmKP) equation are constructed. A Darboux transformation of the Kaup–Newell spectral problem is employed to generate a Lax triad for the lpmKP equation, as well as to define commutative integrable symplectic maps which generate discrete flows of eigenfunctions. These maps share the same integrals with the finite-dimensional Hamiltonian system associated to the Kaup–Newell spectral problem. We investigate asymptotic behaviors of the Baker–Akhiezer functions and obtain their expression in terms of Riemann theta function. Finally, algebro-geometric solutions for the lpmKP equation are reconstructed from these Baker–Akhiezer functions.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac8252</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-1832-1211</orcidid><orcidid>https://orcid.org/0000-0003-3691-4165</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2022-09, Vol.55 (37), p.375201 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_ac8252 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | algebro-geometric solution Baker–AkhiezerAkhiezer function Kaup–Newell spectral problem lattice potential modified Kadomtsev–Petviashvili equation |
title | Algebro-geometric solutions to the lattice potential modified Kadomtsev–Petviashvili equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebro-geometric%20solutions%20to%20the%20lattice%20potential%20modified%20Kadomtsev%E2%80%93Petviashvili%20equation&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Xu,%20Xiaoxue&rft.date=2022-09-16&rft.volume=55&rft.issue=37&rft.spage=375201&rft.pages=375201-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac8252&rft_dat=%3Ciop_cross%3Eaac8252%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |