Variational quantum eigensolver for SU(N) fermions
Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum (NISQ) computers, by using a classical optimizer to train a parameterized quantum circuit to solve tractable quantum problems. The variational quantum eigensolver (VQE) is one of the aforementioned algorit...
Gespeichert in:
Veröffentlicht in: | J.Phys.A 2022-07, Vol.55 (26), p.265301 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum (NISQ) computers, by using a classical optimizer to train a parameterized quantum circuit to solve tractable quantum problems. The variational quantum eigensolver (VQE) is one of the aforementioned algorithms designed to determine the ground-state of many-body Hamiltonians. Here, we apply the VQE to study the ground-state properties of
N
-component fermions. With such knowledge, we study the persistent current of interacting SU(
N
) fermions, which is employed to reliably map out the different quantum phases of the system. Our approach lays out the basis for a current-based quantum simulator of many-body systems that can be implemented on NISQ computers. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/ac7016 |