Four-dimensional Chern–Simons theory and integrable field theories
These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-02, Vol.55 (8), p.83001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 83001 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 55 |
creator | Lacroix, Sylvain |
description | These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how it is naturally related to the Lax formalism of integrable 2D theories. Moreover, we will explain how varying the boundary conditions imposed on this 4D theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the principal Chiral model and its Yang–Baxter deformation. These notes were written for the lectures delivered at the school ‘integrability, dualities and deformations’, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually. |
doi_str_mv | 10.1088/1751-8121/ac48ed |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ac48ed</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac48ed</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-1b63ca705dd48ba88d22550523a220846d0f751207f7b076b33af2165f8a78173</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwM-YBCD3bcWxGFGhBqtShMFtObFNXiV3ZYejGO_CGPAmJgrox3enu_tP__QjdYrjHIMQCc4ZzgQleqKYQRp-h2Wl0fuoxvURXKe0BWAEPZIaeluEz5tp1xicXvGqzamei__n63rou-JT1OxPiMVNeZ8735iOqujWZdabV086ZdI0urGqTufmrc_S-fH6rXvL1ZvVaPa7zhgjoc1yXtFEcmNaFqJUQmhDGgBGqCAFRlBrsYJMAt7wGXtaUKktwyaxQXGBO5wimv00MKUVj5SG6TsWjxCDHFOSIKUdkOaUwSO4miQsHuR9YB8T0__kvswhewA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Four-dimensional Chern–Simons theory and integrable field theories</title><source>Institute of Physics Journals</source><creator>Lacroix, Sylvain</creator><creatorcontrib>Lacroix, Sylvain</creatorcontrib><description>These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how it is naturally related to the Lax formalism of integrable 2D theories. Moreover, we will explain how varying the boundary conditions imposed on this 4D theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the principal Chiral model and its Yang–Baxter deformation. These notes were written for the lectures delivered at the school ‘integrability, dualities and deformations’, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac48ed</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Chern–Simons theory ; integrable field theories ; integrable systems ; sigma-models</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-02, Vol.55 (8), p.83001</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-1b63ca705dd48ba88d22550523a220846d0f751207f7b076b33af2165f8a78173</citedby><cites>FETCH-LOGICAL-c280t-1b63ca705dd48ba88d22550523a220846d0f751207f7b076b33af2165f8a78173</cites><orcidid>0000-0002-1837-0953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac48ed/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Lacroix, Sylvain</creatorcontrib><title>Four-dimensional Chern–Simons theory and integrable field theories</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how it is naturally related to the Lax formalism of integrable 2D theories. Moreover, we will explain how varying the boundary conditions imposed on this 4D theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the principal Chiral model and its Yang–Baxter deformation. These notes were written for the lectures delivered at the school ‘integrability, dualities and deformations’, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.</description><subject>Chern–Simons theory</subject><subject>integrable field theories</subject><subject>integrable systems</subject><subject>sigma-models</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwM-YBCD3bcWxGFGhBqtShMFtObFNXiV3ZYejGO_CGPAmJgrox3enu_tP__QjdYrjHIMQCc4ZzgQleqKYQRp-h2Wl0fuoxvURXKe0BWAEPZIaeluEz5tp1xicXvGqzamei__n63rou-JT1OxPiMVNeZ8735iOqujWZdabV086ZdI0urGqTufmrc_S-fH6rXvL1ZvVaPa7zhgjoc1yXtFEcmNaFqJUQmhDGgBGqCAFRlBrsYJMAt7wGXtaUKktwyaxQXGBO5wimv00MKUVj5SG6TsWjxCDHFOSIKUdkOaUwSO4miQsHuR9YB8T0__kvswhewA</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Lacroix, Sylvain</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1837-0953</orcidid></search><sort><creationdate>20220203</creationdate><title>Four-dimensional Chern–Simons theory and integrable field theories</title><author>Lacroix, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-1b63ca705dd48ba88d22550523a220846d0f751207f7b076b33af2165f8a78173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chern–Simons theory</topic><topic>integrable field theories</topic><topic>integrable systems</topic><topic>sigma-models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacroix, Sylvain</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacroix, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-dimensional Chern–Simons theory and integrable field theories</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>55</volume><issue>8</issue><spage>83001</spage><pages>83001-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how it is naturally related to the Lax formalism of integrable 2D theories. Moreover, we will explain how varying the boundary conditions imposed on this 4D theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the principal Chiral model and its Yang–Baxter deformation. These notes were written for the lectures delivered at the school ‘integrability, dualities and deformations’, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac48ed</doi><tpages>63</tpages><orcidid>https://orcid.org/0000-0002-1837-0953</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2022-02, Vol.55 (8), p.83001 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_ac48ed |
source | Institute of Physics Journals |
subjects | Chern–Simons theory integrable field theories integrable systems sigma-models |
title | Four-dimensional Chern–Simons theory and integrable field theories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-dimensional%20Chern%E2%80%93Simons%20theory%20and%20integrable%20field%20theories&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Lacroix,%20Sylvain&rft.date=2022-02-03&rft.volume=55&rft.issue=8&rft.spage=83001&rft.pages=83001-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac48ed&rft_dat=%3Ciop_cross%3Eaac48ed%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |