Four-dimensional Chern–Simons theory and integrable field theories

These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-02, Vol.55 (8), p.83001
1. Verfasser: Lacroix, Sylvain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 83001
container_title Journal of physics. A, Mathematical and theoretical
container_volume 55
creator Lacroix, Sylvain
description These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how it is naturally related to the Lax formalism of integrable 2D theories. Moreover, we will explain how varying the boundary conditions imposed on this 4D theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the principal Chiral model and its Yang–Baxter deformation. These notes were written for the lectures delivered at the school ‘integrability, dualities and deformations’, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.
doi_str_mv 10.1088/1751-8121/ac48ed
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ac48ed</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac48ed</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-1b63ca705dd48ba88d22550523a220846d0f751207f7b076b33af2165f8a78173</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwM-YBCD3bcWxGFGhBqtShMFtObFNXiV3ZYejGO_CGPAmJgrox3enu_tP__QjdYrjHIMQCc4ZzgQleqKYQRp-h2Wl0fuoxvURXKe0BWAEPZIaeluEz5tp1xicXvGqzamei__n63rou-JT1OxPiMVNeZ8735iOqujWZdabV086ZdI0urGqTufmrc_S-fH6rXvL1ZvVaPa7zhgjoc1yXtFEcmNaFqJUQmhDGgBGqCAFRlBrsYJMAt7wGXtaUKktwyaxQXGBO5wimv00MKUVj5SG6TsWjxCDHFOSIKUdkOaUwSO4miQsHuR9YB8T0__kvswhewA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Four-dimensional Chern–Simons theory and integrable field theories</title><source>Institute of Physics Journals</source><creator>Lacroix, Sylvain</creator><creatorcontrib>Lacroix, Sylvain</creatorcontrib><description>These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how it is naturally related to the Lax formalism of integrable 2D theories. Moreover, we will explain how varying the boundary conditions imposed on this 4D theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the principal Chiral model and its Yang–Baxter deformation. These notes were written for the lectures delivered at the school ‘integrability, dualities and deformations’, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac48ed</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Chern–Simons theory ; integrable field theories ; integrable systems ; sigma-models</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-02, Vol.55 (8), p.83001</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-1b63ca705dd48ba88d22550523a220846d0f751207f7b076b33af2165f8a78173</citedby><cites>FETCH-LOGICAL-c280t-1b63ca705dd48ba88d22550523a220846d0f751207f7b076b33af2165f8a78173</cites><orcidid>0000-0002-1837-0953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac48ed/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Lacroix, Sylvain</creatorcontrib><title>Four-dimensional Chern–Simons theory and integrable field theories</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how it is naturally related to the Lax formalism of integrable 2D theories. Moreover, we will explain how varying the boundary conditions imposed on this 4D theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the principal Chiral model and its Yang–Baxter deformation. These notes were written for the lectures delivered at the school ‘integrability, dualities and deformations’, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.</description><subject>Chern–Simons theory</subject><subject>integrable field theories</subject><subject>integrable systems</subject><subject>sigma-models</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwM-YBCD3bcWxGFGhBqtShMFtObFNXiV3ZYejGO_CGPAmJgrox3enu_tP__QjdYrjHIMQCc4ZzgQleqKYQRp-h2Wl0fuoxvURXKe0BWAEPZIaeluEz5tp1xicXvGqzamei__n63rou-JT1OxPiMVNeZ8735iOqujWZdabV086ZdI0urGqTufmrc_S-fH6rXvL1ZvVaPa7zhgjoc1yXtFEcmNaFqJUQmhDGgBGqCAFRlBrsYJMAt7wGXtaUKktwyaxQXGBO5wimv00MKUVj5SG6TsWjxCDHFOSIKUdkOaUwSO4miQsHuR9YB8T0__kvswhewA</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Lacroix, Sylvain</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1837-0953</orcidid></search><sort><creationdate>20220203</creationdate><title>Four-dimensional Chern–Simons theory and integrable field theories</title><author>Lacroix, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-1b63ca705dd48ba88d22550523a220846d0f751207f7b076b33af2165f8a78173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chern–Simons theory</topic><topic>integrable field theories</topic><topic>integrable systems</topic><topic>sigma-models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacroix, Sylvain</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacroix, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-dimensional Chern–Simons theory and integrable field theories</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>55</volume><issue>8</issue><spage>83001</spage><pages>83001-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>These lecture notes concern the semi-holomorphic 4D Chern–Simons theory and its applications to classical integrable field theories in 2D and in particular integrable sigma-models. After introducing the main properties of the Chern–Simons theory in 3D, we will define its 4D analogue and explain how it is naturally related to the Lax formalism of integrable 2D theories. Moreover, we will explain how varying the boundary conditions imposed on this 4D theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the principal Chiral model and its Yang–Baxter deformation. These notes were written for the lectures delivered at the school ‘integrability, dualities and deformations’, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac48ed</doi><tpages>63</tpages><orcidid>https://orcid.org/0000-0002-1837-0953</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2022-02, Vol.55 (8), p.83001
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ac48ed
source Institute of Physics Journals
subjects Chern–Simons theory
integrable field theories
integrable systems
sigma-models
title Four-dimensional Chern–Simons theory and integrable field theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-dimensional%20Chern%E2%80%93Simons%20theory%20and%20integrable%20field%20theories&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Lacroix,%20Sylvain&rft.date=2022-02-03&rft.volume=55&rft.issue=8&rft.spage=83001&rft.pages=83001-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac48ed&rft_dat=%3Ciop_cross%3Eaac48ed%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true