Linking and link complexity of geometrically constrained pairs of rings
We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance d apart, and the...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2021-12, Vol.54 (50), p.505002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 50 |
container_start_page | 505002 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 54 |
creator | Orlandini, E Tesi, M C Whittington, S G |
description | We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance
d
apart, and the other is to insist that the radius of gyration of the
pair
of polygons is less than
R
. The second constraint results in links that are quite spherically symmetric, especially at small values of
R
, while the first constraint gives much less spherically symmetric pairs, prolate at large
d
and becoming more oblate at smaller
d
. These effects have an influence on the observed values of the linking probability and link spectrum. |
doi_str_mv | 10.1088/1751-8121/ac385a |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ac385a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac385a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-83cc220309edf83ca32d7335f1b77619ff1b4e8b818425d74d3a5ef4a70944213</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgunr3mJMn606-bHqURVeh4EXPIZuPJWu3LUkF--9N6bInEQbmzcx7w7xB6JbAAwEpV6QUpJCEkpU2TAp9hhan1vkJE3aJrlLaAwgOFV2gTR3ar9DusG4tbjLGpjv0jfsJw4g7j3euO7ghBqObZsyzNg1Rh9ZZ3OsQ00SJWZ6u0YXXTXI3x7xEny_PH-vXon7fvK2f6sIwwYZCMmMoBQaVsz4XmlFbMiY82ZblI6l8BtzJrSSSU2FLbpkWznNdQsU5JWyJYN5rYpdSdF71MRx0HBUBNT1CTU7V5FrNj8iS-1kSul7tu-_Y5gP_o9_9QddKcCUghwCgqree_QJ7t2uP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linking and link complexity of geometrically constrained pairs of rings</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Orlandini, E ; Tesi, M C ; Whittington, S G</creator><creatorcontrib>Orlandini, E ; Tesi, M C ; Whittington, S G</creatorcontrib><description>We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance
d
apart, and the other is to insist that the radius of gyration of the
pair
of polygons is less than
R
. The second constraint results in links that are quite spherically symmetric, especially at small values of
R
, while the first constraint gives much less spherically symmetric pairs, prolate at large
d
and becoming more oblate at smaller
d
. These effects have an influence on the observed values of the linking probability and link spectrum.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac385a</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>lattice polygons ; Monte Carlo methods ; topological links</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2021-12, Vol.54 (50), p.505002</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-83cc220309edf83ca32d7335f1b77619ff1b4e8b818425d74d3a5ef4a70944213</citedby><cites>FETCH-LOGICAL-c353t-83cc220309edf83ca32d7335f1b77619ff1b4e8b818425d74d3a5ef4a70944213</cites><orcidid>0000-0001-5045-8456 ; 0000-0003-3680-9488 ; 0000-0003-1451-6895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac385a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53829,53876</link.rule.ids></links><search><creatorcontrib>Orlandini, E</creatorcontrib><creatorcontrib>Tesi, M C</creatorcontrib><creatorcontrib>Whittington, S G</creatorcontrib><title>Linking and link complexity of geometrically constrained pairs of rings</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance
d
apart, and the other is to insist that the radius of gyration of the
pair
of polygons is less than
R
. The second constraint results in links that are quite spherically symmetric, especially at small values of
R
, while the first constraint gives much less spherically symmetric pairs, prolate at large
d
and becoming more oblate at smaller
d
. These effects have an influence on the observed values of the linking probability and link spectrum.</description><subject>lattice polygons</subject><subject>Monte Carlo methods</subject><subject>topological links</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLgunr3mJMn606-bHqURVeh4EXPIZuPJWu3LUkF--9N6bInEQbmzcx7w7xB6JbAAwEpV6QUpJCEkpU2TAp9hhan1vkJE3aJrlLaAwgOFV2gTR3ar9DusG4tbjLGpjv0jfsJw4g7j3euO7ghBqObZsyzNg1Rh9ZZ3OsQ00SJWZ6u0YXXTXI3x7xEny_PH-vXon7fvK2f6sIwwYZCMmMoBQaVsz4XmlFbMiY82ZblI6l8BtzJrSSSU2FLbpkWznNdQsU5JWyJYN5rYpdSdF71MRx0HBUBNT1CTU7V5FrNj8iS-1kSul7tu-_Y5gP_o9_9QddKcCUghwCgqree_QJ7t2uP</recordid><startdate>20211217</startdate><enddate>20211217</enddate><creator>Orlandini, E</creator><creator>Tesi, M C</creator><creator>Whittington, S G</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5045-8456</orcidid><orcidid>https://orcid.org/0000-0003-3680-9488</orcidid><orcidid>https://orcid.org/0000-0003-1451-6895</orcidid></search><sort><creationdate>20211217</creationdate><title>Linking and link complexity of geometrically constrained pairs of rings</title><author>Orlandini, E ; Tesi, M C ; Whittington, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-83cc220309edf83ca32d7335f1b77619ff1b4e8b818425d74d3a5ef4a70944213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>lattice polygons</topic><topic>Monte Carlo methods</topic><topic>topological links</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlandini, E</creatorcontrib><creatorcontrib>Tesi, M C</creatorcontrib><creatorcontrib>Whittington, S G</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlandini, E</au><au>Tesi, M C</au><au>Whittington, S G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking and link complexity of geometrically constrained pairs of rings</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2021-12-17</date><risdate>2021</risdate><volume>54</volume><issue>50</issue><spage>505002</spage><pages>505002-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance
d
apart, and the other is to insist that the radius of gyration of the
pair
of polygons is less than
R
. The second constraint results in links that are quite spherically symmetric, especially at small values of
R
, while the first constraint gives much less spherically symmetric pairs, prolate at large
d
and becoming more oblate at smaller
d
. These effects have an influence on the observed values of the linking probability and link spectrum.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac385a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5045-8456</orcidid><orcidid>https://orcid.org/0000-0003-3680-9488</orcidid><orcidid>https://orcid.org/0000-0003-1451-6895</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2021-12, Vol.54 (50), p.505002 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_ac385a |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | lattice polygons Monte Carlo methods topological links |
title | Linking and link complexity of geometrically constrained pairs of rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20and%20link%20complexity%20of%20geometrically%20constrained%20pairs%20of%20rings&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Orlandini,%20E&rft.date=2021-12-17&rft.volume=54&rft.issue=50&rft.spage=505002&rft.pages=505002-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac385a&rft_dat=%3Ciop_cross%3Eaac385a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |