Linking and link complexity of geometrically constrained pairs of rings

We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance d apart, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2021-12, Vol.54 (50), p.505002
Hauptverfasser: Orlandini, E, Tesi, M C, Whittington, S G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 50
container_start_page 505002
container_title Journal of physics. A, Mathematical and theoretical
container_volume 54
creator Orlandini, E
Tesi, M C
Whittington, S G
description We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance d apart, and the other is to insist that the radius of gyration of the pair of polygons is less than R . The second constraint results in links that are quite spherically symmetric, especially at small values of R , while the first constraint gives much less spherically symmetric pairs, prolate at large d and becoming more oblate at smaller d . These effects have an influence on the observed values of the linking probability and link spectrum.
doi_str_mv 10.1088/1751-8121/ac385a
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ac385a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac385a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-83cc220309edf83ca32d7335f1b77619ff1b4e8b818425d74d3a5ef4a70944213</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgunr3mJMn606-bHqURVeh4EXPIZuPJWu3LUkF--9N6bInEQbmzcx7w7xB6JbAAwEpV6QUpJCEkpU2TAp9hhan1vkJE3aJrlLaAwgOFV2gTR3ar9DusG4tbjLGpjv0jfsJw4g7j3euO7ghBqObZsyzNg1Rh9ZZ3OsQ00SJWZ6u0YXXTXI3x7xEny_PH-vXon7fvK2f6sIwwYZCMmMoBQaVsz4XmlFbMiY82ZblI6l8BtzJrSSSU2FLbpkWznNdQsU5JWyJYN5rYpdSdF71MRx0HBUBNT1CTU7V5FrNj8iS-1kSul7tu-_Y5gP_o9_9QddKcCUghwCgqree_QJ7t2uP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linking and link complexity of geometrically constrained pairs of rings</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Orlandini, E ; Tesi, M C ; Whittington, S G</creator><creatorcontrib>Orlandini, E ; Tesi, M C ; Whittington, S G</creatorcontrib><description>We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance d apart, and the other is to insist that the radius of gyration of the pair of polygons is less than R . The second constraint results in links that are quite spherically symmetric, especially at small values of R , while the first constraint gives much less spherically symmetric pairs, prolate at large d and becoming more oblate at smaller d . These effects have an influence on the observed values of the linking probability and link spectrum.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac385a</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>lattice polygons ; Monte Carlo methods ; topological links</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2021-12, Vol.54 (50), p.505002</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-83cc220309edf83ca32d7335f1b77619ff1b4e8b818425d74d3a5ef4a70944213</citedby><cites>FETCH-LOGICAL-c353t-83cc220309edf83ca32d7335f1b77619ff1b4e8b818425d74d3a5ef4a70944213</cites><orcidid>0000-0001-5045-8456 ; 0000-0003-3680-9488 ; 0000-0003-1451-6895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac385a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53829,53876</link.rule.ids></links><search><creatorcontrib>Orlandini, E</creatorcontrib><creatorcontrib>Tesi, M C</creatorcontrib><creatorcontrib>Whittington, S G</creatorcontrib><title>Linking and link complexity of geometrically constrained pairs of rings</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance d apart, and the other is to insist that the radius of gyration of the pair of polygons is less than R . The second constraint results in links that are quite spherically symmetric, especially at small values of R , while the first constraint gives much less spherically symmetric pairs, prolate at large d and becoming more oblate at smaller d . These effects have an influence on the observed values of the linking probability and link spectrum.</description><subject>lattice polygons</subject><subject>Monte Carlo methods</subject><subject>topological links</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLgunr3mJMn606-bHqURVeh4EXPIZuPJWu3LUkF--9N6bInEQbmzcx7w7xB6JbAAwEpV6QUpJCEkpU2TAp9hhan1vkJE3aJrlLaAwgOFV2gTR3ar9DusG4tbjLGpjv0jfsJw4g7j3euO7ghBqObZsyzNg1Rh9ZZ3OsQ00SJWZ6u0YXXTXI3x7xEny_PH-vXon7fvK2f6sIwwYZCMmMoBQaVsz4XmlFbMiY82ZblI6l8BtzJrSSSU2FLbpkWznNdQsU5JWyJYN5rYpdSdF71MRx0HBUBNT1CTU7V5FrNj8iS-1kSul7tu-_Y5gP_o9_9QddKcCUghwCgqree_QJ7t2uP</recordid><startdate>20211217</startdate><enddate>20211217</enddate><creator>Orlandini, E</creator><creator>Tesi, M C</creator><creator>Whittington, S G</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5045-8456</orcidid><orcidid>https://orcid.org/0000-0003-3680-9488</orcidid><orcidid>https://orcid.org/0000-0003-1451-6895</orcidid></search><sort><creationdate>20211217</creationdate><title>Linking and link complexity of geometrically constrained pairs of rings</title><author>Orlandini, E ; Tesi, M C ; Whittington, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-83cc220309edf83ca32d7335f1b77619ff1b4e8b818425d74d3a5ef4a70944213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>lattice polygons</topic><topic>Monte Carlo methods</topic><topic>topological links</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlandini, E</creatorcontrib><creatorcontrib>Tesi, M C</creatorcontrib><creatorcontrib>Whittington, S G</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlandini, E</au><au>Tesi, M C</au><au>Whittington, S G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking and link complexity of geometrically constrained pairs of rings</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2021-12-17</date><risdate>2021</risdate><volume>54</volume><issue>50</issue><spage>505002</spage><pages>505002-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We investigate and compare the effects of two different constraints on the geometrical properties and linking of pairs of polygons on the simple cubic lattice, using Monte Carlo methods. One constraint is to insist that the centres of mass of the two polygons are less than distance d apart, and the other is to insist that the radius of gyration of the pair of polygons is less than R . The second constraint results in links that are quite spherically symmetric, especially at small values of R , while the first constraint gives much less spherically symmetric pairs, prolate at large d and becoming more oblate at smaller d . These effects have an influence on the observed values of the linking probability and link spectrum.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac385a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5045-8456</orcidid><orcidid>https://orcid.org/0000-0003-3680-9488</orcidid><orcidid>https://orcid.org/0000-0003-1451-6895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2021-12, Vol.54 (50), p.505002
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ac385a
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects lattice polygons
Monte Carlo methods
topological links
title Linking and link complexity of geometrically constrained pairs of rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20and%20link%20complexity%20of%20geometrically%20constrained%20pairs%20of%20rings&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Orlandini,%20E&rft.date=2021-12-17&rft.volume=54&rft.issue=50&rft.spage=505002&rft.pages=505002-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac385a&rft_dat=%3Ciop_cross%3Eaac385a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true