Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart

N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically ref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-07, Vol.53 (30), p.305001
Hauptverfasser: Cirillo, Emilio N M, Colangeli, Matteo, Muntean, Adrian, Richardson, Omar, Rondoni, Lamberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 30
container_start_page 305001
container_title Journal of physics. A, Mathematical and theoretical
container_volume 53
creator Cirillo, Emilio N M
Colangeli, Matteo
Muntean, Adrian
Richardson, Omar
Rondoni, Lamberto
description N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T. When the geometrical parameters of the billiard table are fixed, this mechanism gives rise to non-equilibrium phase transitions in the large N limit: letting T/N decrease, the homogeneous particle distribution abruptly turns into a stationary inhomogeneous one. The equivalence with a modified Ehrenfest two urn model, motivated by the ergodicity of the billiard with no rebound, allows us to obtain analytical results that accurately describe the numerical billiard simulation results. Thus, a stochastic exactly solvable model that exhibits non-equilibrium phase transitions is also introduced.
doi_str_mv 10.1088/1751-8121/ab94ec
format Article
fullrecord <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ab94ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_kau_77788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-bedddb354cd6067301b7d86eba9ae91077a958c70bcb3bc2bcf8a6a5207cf94d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7ePebkyWrStE16XHb9ggUv6tGQr2rWNqlJqvjvbVlZLyIMzDDzzDvMC8ApRhcYMXaJaYkzhnN8KWRdGLUHZrvW_q7G5BAcxbhBqCxQnc_A88okEzrrbExWwWA-TIhWtgZ2XpsW-gY67zLzPtjWymCHDvavIhqYgnDRJutdhMJpGJNX42ASUX5wo2gvQjoGB41oozn5yXPweH31sLzN1vc3d8vFOlOkYCmTRmstSVkoXaGKEoQl1awyUtTC1BhRKuqSKYqkkkSqXKqGiUqUOaKqqQtN5uB8qxs_TT9I3gfbifDFvbB8ZZ8W3IcX_iYGTillbMTRFlfBxxhMs1vAiE928skvPnnHt3b-XrC-5xs_BDf-8x9-9gcueEk4QWOUCGHe64Z8A6JRh14</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart</title><source>Institute of Physics Journals</source><creator>Cirillo, Emilio N M ; Colangeli, Matteo ; Muntean, Adrian ; Richardson, Omar ; Rondoni, Lamberto</creator><creatorcontrib>Cirillo, Emilio N M ; Colangeli, Matteo ; Muntean, Adrian ; Richardson, Omar ; Rondoni, Lamberto</creatorcontrib><description>N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T. When the geometrical parameters of the billiard table are fixed, this mechanism gives rise to non-equilibrium phase transitions in the large N limit: letting T/N decrease, the homogeneous particle distribution abruptly turns into a stationary inhomogeneous one. The equivalence with a modified Ehrenfest two urn model, motivated by the ergodicity of the billiard with no rebound, allows us to obtain analytical results that accurately describe the numerical billiard simulation results. Thus, a stochastic exactly solvable model that exhibits non-equilibrium phase transitions is also introduced.</description><identifier>ISSN: 1751-8113</identifier><identifier>ISSN: 1751-8121</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ab94ec</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>billiards ; Ehrenfest urn model ; Matematik ; Mathematics ; non-equilibrium states ; phase transitions</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2020-07, Vol.53 (30), p.305001</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-bedddb354cd6067301b7d86eba9ae91077a958c70bcb3bc2bcf8a6a5207cf94d3</citedby><cites>FETCH-LOGICAL-c348t-bedddb354cd6067301b7d86eba9ae91077a958c70bcb3bc2bcf8a6a5207cf94d3</cites><orcidid>0000-0002-7424-7888 ; 0000-0002-4223-6279 ; 0000-0002-1160-0007 ; 0000-0003-3673-2054 ; 0000-0002-2185-641X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ab94ec/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-77788$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cirillo, Emilio N M</creatorcontrib><creatorcontrib>Colangeli, Matteo</creatorcontrib><creatorcontrib>Muntean, Adrian</creatorcontrib><creatorcontrib>Richardson, Omar</creatorcontrib><creatorcontrib>Rondoni, Lamberto</creatorcontrib><title>Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T. When the geometrical parameters of the billiard table are fixed, this mechanism gives rise to non-equilibrium phase transitions in the large N limit: letting T/N decrease, the homogeneous particle distribution abruptly turns into a stationary inhomogeneous one. The equivalence with a modified Ehrenfest two urn model, motivated by the ergodicity of the billiard with no rebound, allows us to obtain analytical results that accurately describe the numerical billiard simulation results. Thus, a stochastic exactly solvable model that exhibits non-equilibrium phase transitions is also introduced.</description><subject>billiards</subject><subject>Ehrenfest urn model</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>non-equilibrium states</subject><subject>phase transitions</subject><issn>1751-8113</issn><issn>1751-8121</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7ePebkyWrStE16XHb9ggUv6tGQr2rWNqlJqvjvbVlZLyIMzDDzzDvMC8ApRhcYMXaJaYkzhnN8KWRdGLUHZrvW_q7G5BAcxbhBqCxQnc_A88okEzrrbExWwWA-TIhWtgZ2XpsW-gY67zLzPtjWymCHDvavIhqYgnDRJutdhMJpGJNX42ASUX5wo2gvQjoGB41oozn5yXPweH31sLzN1vc3d8vFOlOkYCmTRmstSVkoXaGKEoQl1awyUtTC1BhRKuqSKYqkkkSqXKqGiUqUOaKqqQtN5uB8qxs_TT9I3gfbifDFvbB8ZZ8W3IcX_iYGTillbMTRFlfBxxhMs1vAiE928skvPnnHt3b-XrC-5xs_BDf-8x9-9gcueEk4QWOUCGHe64Z8A6JRh14</recordid><startdate>20200731</startdate><enddate>20200731</enddate><creator>Cirillo, Emilio N M</creator><creator>Colangeli, Matteo</creator><creator>Muntean, Adrian</creator><creator>Richardson, Omar</creator><creator>Rondoni, Lamberto</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG3</scope><orcidid>https://orcid.org/0000-0002-7424-7888</orcidid><orcidid>https://orcid.org/0000-0002-4223-6279</orcidid><orcidid>https://orcid.org/0000-0002-1160-0007</orcidid><orcidid>https://orcid.org/0000-0003-3673-2054</orcidid><orcidid>https://orcid.org/0000-0002-2185-641X</orcidid></search><sort><creationdate>20200731</creationdate><title>Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart</title><author>Cirillo, Emilio N M ; Colangeli, Matteo ; Muntean, Adrian ; Richardson, Omar ; Rondoni, Lamberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-bedddb354cd6067301b7d86eba9ae91077a958c70bcb3bc2bcf8a6a5207cf94d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>billiards</topic><topic>Ehrenfest urn model</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>non-equilibrium states</topic><topic>phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cirillo, Emilio N M</creatorcontrib><creatorcontrib>Colangeli, Matteo</creatorcontrib><creatorcontrib>Muntean, Adrian</creatorcontrib><creatorcontrib>Richardson, Omar</creatorcontrib><creatorcontrib>Rondoni, Lamberto</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Karlstads universitet</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cirillo, Emilio N M</au><au>Colangeli, Matteo</au><au>Muntean, Adrian</au><au>Richardson, Omar</au><au>Rondoni, Lamberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2020-07-31</date><risdate>2020</risdate><volume>53</volume><issue>30</issue><spage>305001</spage><pages>305001-</pages><issn>1751-8113</issn><issn>1751-8121</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T. When the geometrical parameters of the billiard table are fixed, this mechanism gives rise to non-equilibrium phase transitions in the large N limit: letting T/N decrease, the homogeneous particle distribution abruptly turns into a stationary inhomogeneous one. The equivalence with a modified Ehrenfest two urn model, motivated by the ergodicity of the billiard with no rebound, allows us to obtain analytical results that accurately describe the numerical billiard simulation results. Thus, a stochastic exactly solvable model that exhibits non-equilibrium phase transitions is also introduced.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ab94ec</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7424-7888</orcidid><orcidid>https://orcid.org/0000-0002-4223-6279</orcidid><orcidid>https://orcid.org/0000-0002-1160-0007</orcidid><orcidid>https://orcid.org/0000-0003-3673-2054</orcidid><orcidid>https://orcid.org/0000-0002-2185-641X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2020-07, Vol.53 (30), p.305001
issn 1751-8113
1751-8121
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ab94ec
source Institute of Physics Journals
subjects billiards
Ehrenfest urn model
Matematik
Mathematics
non-equilibrium states
phase transitions
title Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20reversible%20model%20of%20non-equilibrium%20phase%20transitions%20and%20stochastic%20counterpart&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Cirillo,%20Emilio%20N%20M&rft.date=2020-07-31&rft.volume=53&rft.issue=30&rft.spage=305001&rft.pages=305001-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ab94ec&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_kau_77788%3C/swepub_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true