Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart
N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically ref...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-07, Vol.53 (30), p.305001 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 30 |
container_start_page | 305001 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 53 |
creator | Cirillo, Emilio N M Colangeli, Matteo Muntean, Adrian Richardson, Omar Rondoni, Lamberto |
description | N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T. When the geometrical parameters of the billiard table are fixed, this mechanism gives rise to non-equilibrium phase transitions in the large N limit: letting T/N decrease, the homogeneous particle distribution abruptly turns into a stationary inhomogeneous one. The equivalence with a modified Ehrenfest two urn model, motivated by the ergodicity of the billiard with no rebound, allows us to obtain analytical results that accurately describe the numerical billiard simulation results. Thus, a stochastic exactly solvable model that exhibits non-equilibrium phase transitions is also introduced. |
doi_str_mv | 10.1088/1751-8121/ab94ec |
format | Article |
fullrecord | <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ab94ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_kau_77788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-bedddb354cd6067301b7d86eba9ae91077a958c70bcb3bc2bcf8a6a5207cf94d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7ePebkyWrStE16XHb9ggUv6tGQr2rWNqlJqvjvbVlZLyIMzDDzzDvMC8ApRhcYMXaJaYkzhnN8KWRdGLUHZrvW_q7G5BAcxbhBqCxQnc_A88okEzrrbExWwWA-TIhWtgZ2XpsW-gY67zLzPtjWymCHDvavIhqYgnDRJutdhMJpGJNX42ASUX5wo2gvQjoGB41oozn5yXPweH31sLzN1vc3d8vFOlOkYCmTRmstSVkoXaGKEoQl1awyUtTC1BhRKuqSKYqkkkSqXKqGiUqUOaKqqQtN5uB8qxs_TT9I3gfbifDFvbB8ZZ8W3IcX_iYGTillbMTRFlfBxxhMs1vAiE928skvPnnHt3b-XrC-5xs_BDf-8x9-9gcueEk4QWOUCGHe64Z8A6JRh14</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart</title><source>Institute of Physics Journals</source><creator>Cirillo, Emilio N M ; Colangeli, Matteo ; Muntean, Adrian ; Richardson, Omar ; Rondoni, Lamberto</creator><creatorcontrib>Cirillo, Emilio N M ; Colangeli, Matteo ; Muntean, Adrian ; Richardson, Omar ; Rondoni, Lamberto</creatorcontrib><description>N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T. When the geometrical parameters of the billiard table are fixed, this mechanism gives rise to non-equilibrium phase transitions in the large N limit: letting T/N decrease, the homogeneous particle distribution abruptly turns into a stationary inhomogeneous one. The equivalence with a modified Ehrenfest two urn model, motivated by the ergodicity of the billiard with no rebound, allows us to obtain analytical results that accurately describe the numerical billiard simulation results. Thus, a stochastic exactly solvable model that exhibits non-equilibrium phase transitions is also introduced.</description><identifier>ISSN: 1751-8113</identifier><identifier>ISSN: 1751-8121</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ab94ec</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>billiards ; Ehrenfest urn model ; Matematik ; Mathematics ; non-equilibrium states ; phase transitions</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2020-07, Vol.53 (30), p.305001</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-bedddb354cd6067301b7d86eba9ae91077a958c70bcb3bc2bcf8a6a5207cf94d3</citedby><cites>FETCH-LOGICAL-c348t-bedddb354cd6067301b7d86eba9ae91077a958c70bcb3bc2bcf8a6a5207cf94d3</cites><orcidid>0000-0002-7424-7888 ; 0000-0002-4223-6279 ; 0000-0002-1160-0007 ; 0000-0003-3673-2054 ; 0000-0002-2185-641X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ab94ec/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-77788$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cirillo, Emilio N M</creatorcontrib><creatorcontrib>Colangeli, Matteo</creatorcontrib><creatorcontrib>Muntean, Adrian</creatorcontrib><creatorcontrib>Richardson, Omar</creatorcontrib><creatorcontrib>Rondoni, Lamberto</creatorcontrib><title>Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T. When the geometrical parameters of the billiard table are fixed, this mechanism gives rise to non-equilibrium phase transitions in the large N limit: letting T/N decrease, the homogeneous particle distribution abruptly turns into a stationary inhomogeneous one. The equivalence with a modified Ehrenfest two urn model, motivated by the ergodicity of the billiard with no rebound, allows us to obtain analytical results that accurately describe the numerical billiard simulation results. Thus, a stochastic exactly solvable model that exhibits non-equilibrium phase transitions is also introduced.</description><subject>billiards</subject><subject>Ehrenfest urn model</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>non-equilibrium states</subject><subject>phase transitions</subject><issn>1751-8113</issn><issn>1751-8121</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7ePebkyWrStE16XHb9ggUv6tGQr2rWNqlJqvjvbVlZLyIMzDDzzDvMC8ApRhcYMXaJaYkzhnN8KWRdGLUHZrvW_q7G5BAcxbhBqCxQnc_A88okEzrrbExWwWA-TIhWtgZ2XpsW-gY67zLzPtjWymCHDvavIhqYgnDRJutdhMJpGJNX42ASUX5wo2gvQjoGB41oozn5yXPweH31sLzN1vc3d8vFOlOkYCmTRmstSVkoXaGKEoQl1awyUtTC1BhRKuqSKYqkkkSqXKqGiUqUOaKqqQtN5uB8qxs_TT9I3gfbifDFvbB8ZZ8W3IcX_iYGTillbMTRFlfBxxhMs1vAiE928skvPnnHt3b-XrC-5xs_BDf-8x9-9gcueEk4QWOUCGHe64Z8A6JRh14</recordid><startdate>20200731</startdate><enddate>20200731</enddate><creator>Cirillo, Emilio N M</creator><creator>Colangeli, Matteo</creator><creator>Muntean, Adrian</creator><creator>Richardson, Omar</creator><creator>Rondoni, Lamberto</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG3</scope><orcidid>https://orcid.org/0000-0002-7424-7888</orcidid><orcidid>https://orcid.org/0000-0002-4223-6279</orcidid><orcidid>https://orcid.org/0000-0002-1160-0007</orcidid><orcidid>https://orcid.org/0000-0003-3673-2054</orcidid><orcidid>https://orcid.org/0000-0002-2185-641X</orcidid></search><sort><creationdate>20200731</creationdate><title>Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart</title><author>Cirillo, Emilio N M ; Colangeli, Matteo ; Muntean, Adrian ; Richardson, Omar ; Rondoni, Lamberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-bedddb354cd6067301b7d86eba9ae91077a958c70bcb3bc2bcf8a6a5207cf94d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>billiards</topic><topic>Ehrenfest urn model</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>non-equilibrium states</topic><topic>phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cirillo, Emilio N M</creatorcontrib><creatorcontrib>Colangeli, Matteo</creatorcontrib><creatorcontrib>Muntean, Adrian</creatorcontrib><creatorcontrib>Richardson, Omar</creatorcontrib><creatorcontrib>Rondoni, Lamberto</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Karlstads universitet</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cirillo, Emilio N M</au><au>Colangeli, Matteo</au><au>Muntean, Adrian</au><au>Richardson, Omar</au><au>Rondoni, Lamberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2020-07-31</date><risdate>2020</risdate><volume>53</volume><issue>30</issue><spage>305001</spage><pages>305001-</pages><issn>1751-8113</issn><issn>1751-8121</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T. When the geometrical parameters of the billiard table are fixed, this mechanism gives rise to non-equilibrium phase transitions in the large N limit: letting T/N decrease, the homogeneous particle distribution abruptly turns into a stationary inhomogeneous one. The equivalence with a modified Ehrenfest two urn model, motivated by the ergodicity of the billiard with no rebound, allows us to obtain analytical results that accurately describe the numerical billiard simulation results. Thus, a stochastic exactly solvable model that exhibits non-equilibrium phase transitions is also introduced.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ab94ec</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7424-7888</orcidid><orcidid>https://orcid.org/0000-0002-4223-6279</orcidid><orcidid>https://orcid.org/0000-0002-1160-0007</orcidid><orcidid>https://orcid.org/0000-0003-3673-2054</orcidid><orcidid>https://orcid.org/0000-0002-2185-641X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2020-07, Vol.53 (30), p.305001 |
issn | 1751-8113 1751-8121 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_ab94ec |
source | Institute of Physics Journals |
subjects | billiards Ehrenfest urn model Matematik Mathematics non-equilibrium states phase transitions |
title | Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20reversible%20model%20of%20non-equilibrium%20phase%20transitions%20and%20stochastic%20counterpart&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Cirillo,%20Emilio%20N%20M&rft.date=2020-07-31&rft.volume=53&rft.issue=30&rft.spage=305001&rft.pages=305001-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ab94ec&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_kau_77788%3C/swepub_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |