First passage time moments of asymmetric Lévy flights

We investigate the first-passage dynamics of symmetric and asymmetric Lévy flights in semi-infinite and bounded intervals. By solving the space-fractional diffusion equation, we analyse the fractional-order moments of the first-passage time probability density function for different values of the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-07, Vol.53 (27), p.275002
Hauptverfasser: Padash, Amin, Chechkin, Aleksei V, Dybiec, Bartłomiej, Magdziarz, Marcin, Shokri, Babak, Metzler, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 27
container_start_page 275002
container_title Journal of physics. A, Mathematical and theoretical
container_volume 53
creator Padash, Amin
Chechkin, Aleksei V
Dybiec, Bartłomiej
Magdziarz, Marcin
Shokri, Babak
Metzler, Ralf
description We investigate the first-passage dynamics of symmetric and asymmetric Lévy flights in semi-infinite and bounded intervals. By solving the space-fractional diffusion equation, we analyse the fractional-order moments of the first-passage time probability density function for different values of the index of stability and the skewness parameter. A comparison with results using the Langevin approach to Lévy flights is presented. For the semi-infinite domain, in certain special cases analytic results are derived explicitly, and in bounded intervals a general analytical expression for the mean first-passage time of Lévy flights with arbitrary skewness is presented. These results are complemented with extensive numerical analyses.
doi_str_mv 10.1088/1751-8121/ab9030
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ab9030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aab9030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d0ca184d49babb1666464f1cb34f01a1959654e387ae5a8ade192d9c0e4d7a983</originalsourceid><addsrcrecordid>eNp1j0FLxDAQhYMouK7ePebkybozbdImR1lcFQpe9BymbbJ22W5LUoX-JH-Hf8yWyp4UBmYY3nu8j7FrhDsEpVaYSYwUxriiQkMCJ2xxfJ0eb0zO2UUIOwApQMcLlm5qH3reUQi0tbyvG8ubtrGHPvDWcQpD09je1yXPv78-B-729fa9D5fszNE-2KvfvWRvm4fX9VOUvzw-r-_zqBSo-6iCklCJSuiCigLTNBWpcFgWiXCAhFrqVAqbqIysJEWVRR1XugQrqoy0SpYM5tzStyF460zn64b8YBDMxG0mMDNBmpl7tNzMlrrtzK798IexoCEjExNn40iA2HSVG4W3fwj_zf0BsQ1lvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First passage time moments of asymmetric Lévy flights</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Padash, Amin ; Chechkin, Aleksei V ; Dybiec, Bartłomiej ; Magdziarz, Marcin ; Shokri, Babak ; Metzler, Ralf</creator><creatorcontrib>Padash, Amin ; Chechkin, Aleksei V ; Dybiec, Bartłomiej ; Magdziarz, Marcin ; Shokri, Babak ; Metzler, Ralf</creatorcontrib><description>We investigate the first-passage dynamics of symmetric and asymmetric Lévy flights in semi-infinite and bounded intervals. By solving the space-fractional diffusion equation, we analyse the fractional-order moments of the first-passage time probability density function for different values of the index of stability and the skewness parameter. A comparison with results using the Langevin approach to Lévy flights is presented. For the semi-infinite domain, in certain special cases analytic results are derived explicitly, and in bounded intervals a general analytical expression for the mean first-passage time of Lévy flights with arbitrary skewness is presented. These results are complemented with extensive numerical analyses.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ab9030</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>first passage time moments ; fractional diffusion equation ; Lévy flight</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2020-07, Vol.53 (27), p.275002</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d0ca184d49babb1666464f1cb34f01a1959654e387ae5a8ade192d9c0e4d7a983</citedby><cites>FETCH-LOGICAL-c419t-d0ca184d49babb1666464f1cb34f01a1959654e387ae5a8ade192d9c0e4d7a983</cites><orcidid>0000-0002-6013-7020 ; 0000-0002-6540-3906 ; 0000-0002-8242-5111 ; 0000-0002-3289-6556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ab9030/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Padash, Amin</creatorcontrib><creatorcontrib>Chechkin, Aleksei V</creatorcontrib><creatorcontrib>Dybiec, Bartłomiej</creatorcontrib><creatorcontrib>Magdziarz, Marcin</creatorcontrib><creatorcontrib>Shokri, Babak</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><title>First passage time moments of asymmetric Lévy flights</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We investigate the first-passage dynamics of symmetric and asymmetric Lévy flights in semi-infinite and bounded intervals. By solving the space-fractional diffusion equation, we analyse the fractional-order moments of the first-passage time probability density function for different values of the index of stability and the skewness parameter. A comparison with results using the Langevin approach to Lévy flights is presented. For the semi-infinite domain, in certain special cases analytic results are derived explicitly, and in bounded intervals a general analytical expression for the mean first-passage time of Lévy flights with arbitrary skewness is presented. These results are complemented with extensive numerical analyses.</description><subject>first passage time moments</subject><subject>fractional diffusion equation</subject><subject>Lévy flight</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j0FLxDAQhYMouK7ePebkybozbdImR1lcFQpe9BymbbJ22W5LUoX-JH-Hf8yWyp4UBmYY3nu8j7FrhDsEpVaYSYwUxriiQkMCJ2xxfJ0eb0zO2UUIOwApQMcLlm5qH3reUQi0tbyvG8ubtrGHPvDWcQpD09je1yXPv78-B-729fa9D5fszNE-2KvfvWRvm4fX9VOUvzw-r-_zqBSo-6iCklCJSuiCigLTNBWpcFgWiXCAhFrqVAqbqIysJEWVRR1XugQrqoy0SpYM5tzStyF460zn64b8YBDMxG0mMDNBmpl7tNzMlrrtzK798IexoCEjExNn40iA2HSVG4W3fwj_zf0BsQ1lvg</recordid><startdate>20200710</startdate><enddate>20200710</enddate><creator>Padash, Amin</creator><creator>Chechkin, Aleksei V</creator><creator>Dybiec, Bartłomiej</creator><creator>Magdziarz, Marcin</creator><creator>Shokri, Babak</creator><creator>Metzler, Ralf</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6013-7020</orcidid><orcidid>https://orcid.org/0000-0002-6540-3906</orcidid><orcidid>https://orcid.org/0000-0002-8242-5111</orcidid><orcidid>https://orcid.org/0000-0002-3289-6556</orcidid></search><sort><creationdate>20200710</creationdate><title>First passage time moments of asymmetric Lévy flights</title><author>Padash, Amin ; Chechkin, Aleksei V ; Dybiec, Bartłomiej ; Magdziarz, Marcin ; Shokri, Babak ; Metzler, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d0ca184d49babb1666464f1cb34f01a1959654e387ae5a8ade192d9c0e4d7a983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>first passage time moments</topic><topic>fractional diffusion equation</topic><topic>Lévy flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padash, Amin</creatorcontrib><creatorcontrib>Chechkin, Aleksei V</creatorcontrib><creatorcontrib>Dybiec, Bartłomiej</creatorcontrib><creatorcontrib>Magdziarz, Marcin</creatorcontrib><creatorcontrib>Shokri, Babak</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padash, Amin</au><au>Chechkin, Aleksei V</au><au>Dybiec, Bartłomiej</au><au>Magdziarz, Marcin</au><au>Shokri, Babak</au><au>Metzler, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First passage time moments of asymmetric Lévy flights</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2020-07-10</date><risdate>2020</risdate><volume>53</volume><issue>27</issue><spage>275002</spage><pages>275002-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We investigate the first-passage dynamics of symmetric and asymmetric Lévy flights in semi-infinite and bounded intervals. By solving the space-fractional diffusion equation, we analyse the fractional-order moments of the first-passage time probability density function for different values of the index of stability and the skewness parameter. A comparison with results using the Langevin approach to Lévy flights is presented. For the semi-infinite domain, in certain special cases analytic results are derived explicitly, and in bounded intervals a general analytical expression for the mean first-passage time of Lévy flights with arbitrary skewness is presented. These results are complemented with extensive numerical analyses.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ab9030</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-6013-7020</orcidid><orcidid>https://orcid.org/0000-0002-6540-3906</orcidid><orcidid>https://orcid.org/0000-0002-8242-5111</orcidid><orcidid>https://orcid.org/0000-0002-3289-6556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2020-07, Vol.53 (27), p.275002
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ab9030
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects first passage time moments
fractional diffusion equation
Lévy flight
title First passage time moments of asymmetric Lévy flights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20passage%20time%20moments%20of%20asymmetric%20L%C3%A9vy%20flights&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Padash,%20Amin&rft.date=2020-07-10&rft.volume=53&rft.issue=27&rft.spage=275002&rft.pages=275002-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ab9030&rft_dat=%3Ciop_cross%3Eaab9030%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true