Geometrical optics of constrained Brownian motion: three short stories

The optimal fluctuation method-essentially geometrical optics-gives a deep insight into large deviations of Brownian motion. Here we illustrate this point by telling three short stories about Brownian motions, 'pushed' into a large-deviation regime by constraints. In story 1 we compute the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2019-10, Vol.52 (41), p.415001
Hauptverfasser: Meerson, Baruch, Smith, Naftali R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 41
container_start_page 415001
container_title Journal of physics. A, Mathematical and theoretical
container_volume 52
creator Meerson, Baruch
Smith, Naftali R
description The optimal fluctuation method-essentially geometrical optics-gives a deep insight into large deviations of Brownian motion. Here we illustrate this point by telling three short stories about Brownian motions, 'pushed' into a large-deviation regime by constraints. In story 1 we compute the short-time large deviation function (LDF) of the winding angle of a Brownian particle wandering around a reflecting disk in the plane. Story 2 addresses a stretched Brownian motion above absorbing obstacles in the plane. We compute the short-time LDF of the position of the surviving Brownian particle at an intermediate point. Story 3 deals with survival of a Brownian particle in 1  +  1 dimension against absorption by a wall which advances according to a power law , where . We also calculate the LDF of the particle position at an earlier time, conditional on the survival by a later time. In all three stories we uncover singularities of the LDFs which have a simple geometric origin and can be interpreted as dynamical phase transitions. We also use the small-deviation limit of the geometrical optics to reconstruct the distribution of typical fluctuations. We argue that, in stories 2 and 3, this is the Ferrari-Spohn distribution.
doi_str_mv 10.1088/1751-8121/ab3f0f
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ab3f0f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aab3f0f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-7017f41111863035281980e45d99811ff4920304962fb2858c5fcf6503400d173</originalsourceid><addsrcrecordid>eNp1UMFKAzEUDKJgrd495gNc-5JsdhNvWmwVCl70HNJsQlO6yZJExL93y5befJf3GGYeM4PQPYFHAkIsSMtJJQglC71lDtwFmp2hy_NN2DW6yXkPwGuQdIZWaxt7W5I3-oDjULzJODpsYsglaR9sh19S_AleB9zH4mN4wmWXrMV5F1PBucTkbb5FV04fsr077Tn6Wr1-Lt-qzcf6ffm8qQwVUKoWSOtqMo5oGDBOBZECbM07KUdzztWSAoNaNtRtqeDCcGdcw4HVAB1p2RzB9NekmHOyTg3J9zr9KgLq2IM6BlXH0GrqYZQ8TBIfB7WP3ymMBv-n_wEz7l2h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometrical optics of constrained Brownian motion: three short stories</title><source>Institute of Physics Journals</source><creator>Meerson, Baruch ; Smith, Naftali R</creator><creatorcontrib>Meerson, Baruch ; Smith, Naftali R</creatorcontrib><description>The optimal fluctuation method-essentially geometrical optics-gives a deep insight into large deviations of Brownian motion. Here we illustrate this point by telling three short stories about Brownian motions, 'pushed' into a large-deviation regime by constraints. In story 1 we compute the short-time large deviation function (LDF) of the winding angle of a Brownian particle wandering around a reflecting disk in the plane. Story 2 addresses a stretched Brownian motion above absorbing obstacles in the plane. We compute the short-time LDF of the position of the surviving Brownian particle at an intermediate point. Story 3 deals with survival of a Brownian particle in 1  +  1 dimension against absorption by a wall which advances according to a power law , where . We also calculate the LDF of the particle position at an earlier time, conditional on the survival by a later time. In all three stories we uncover singularities of the LDFs which have a simple geometric origin and can be interpreted as dynamical phase transitions. We also use the small-deviation limit of the geometrical optics to reconstruct the distribution of typical fluctuations. We argue that, in stories 2 and 3, this is the Ferrari-Spohn distribution.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ab3f0f</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Brownian motion ; dynamical phase transitions ; large deviations ; optimal fluctuation method</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2019-10, Vol.52 (41), p.415001</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-7017f41111863035281980e45d99811ff4920304962fb2858c5fcf6503400d173</citedby><cites>FETCH-LOGICAL-c280t-7017f41111863035281980e45d99811ff4920304962fb2858c5fcf6503400d173</cites><orcidid>0000-0002-6709-8140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ab3f0f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Meerson, Baruch</creatorcontrib><creatorcontrib>Smith, Naftali R</creatorcontrib><title>Geometrical optics of constrained Brownian motion: three short stories</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The optimal fluctuation method-essentially geometrical optics-gives a deep insight into large deviations of Brownian motion. Here we illustrate this point by telling three short stories about Brownian motions, 'pushed' into a large-deviation regime by constraints. In story 1 we compute the short-time large deviation function (LDF) of the winding angle of a Brownian particle wandering around a reflecting disk in the plane. Story 2 addresses a stretched Brownian motion above absorbing obstacles in the plane. We compute the short-time LDF of the position of the surviving Brownian particle at an intermediate point. Story 3 deals with survival of a Brownian particle in 1  +  1 dimension against absorption by a wall which advances according to a power law , where . We also calculate the LDF of the particle position at an earlier time, conditional on the survival by a later time. In all three stories we uncover singularities of the LDFs which have a simple geometric origin and can be interpreted as dynamical phase transitions. We also use the small-deviation limit of the geometrical optics to reconstruct the distribution of typical fluctuations. We argue that, in stories 2 and 3, this is the Ferrari-Spohn distribution.</description><subject>Brownian motion</subject><subject>dynamical phase transitions</subject><subject>large deviations</subject><subject>optimal fluctuation method</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKAzEUDKJgrd495gNc-5JsdhNvWmwVCl70HNJsQlO6yZJExL93y5befJf3GGYeM4PQPYFHAkIsSMtJJQglC71lDtwFmp2hy_NN2DW6yXkPwGuQdIZWaxt7W5I3-oDjULzJODpsYsglaR9sh19S_AleB9zH4mN4wmWXrMV5F1PBucTkbb5FV04fsr077Tn6Wr1-Lt-qzcf6ffm8qQwVUKoWSOtqMo5oGDBOBZECbM07KUdzztWSAoNaNtRtqeDCcGdcw4HVAB1p2RzB9NekmHOyTg3J9zr9KgLq2IM6BlXH0GrqYZQ8TBIfB7WP3ymMBv-n_wEz7l2h</recordid><startdate>20191011</startdate><enddate>20191011</enddate><creator>Meerson, Baruch</creator><creator>Smith, Naftali R</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6709-8140</orcidid></search><sort><creationdate>20191011</creationdate><title>Geometrical optics of constrained Brownian motion: three short stories</title><author>Meerson, Baruch ; Smith, Naftali R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-7017f41111863035281980e45d99811ff4920304962fb2858c5fcf6503400d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brownian motion</topic><topic>dynamical phase transitions</topic><topic>large deviations</topic><topic>optimal fluctuation method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meerson, Baruch</creatorcontrib><creatorcontrib>Smith, Naftali R</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meerson, Baruch</au><au>Smith, Naftali R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical optics of constrained Brownian motion: three short stories</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2019-10-11</date><risdate>2019</risdate><volume>52</volume><issue>41</issue><spage>415001</spage><pages>415001-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The optimal fluctuation method-essentially geometrical optics-gives a deep insight into large deviations of Brownian motion. Here we illustrate this point by telling three short stories about Brownian motions, 'pushed' into a large-deviation regime by constraints. In story 1 we compute the short-time large deviation function (LDF) of the winding angle of a Brownian particle wandering around a reflecting disk in the plane. Story 2 addresses a stretched Brownian motion above absorbing obstacles in the plane. We compute the short-time LDF of the position of the surviving Brownian particle at an intermediate point. Story 3 deals with survival of a Brownian particle in 1  +  1 dimension against absorption by a wall which advances according to a power law , where . We also calculate the LDF of the particle position at an earlier time, conditional on the survival by a later time. In all three stories we uncover singularities of the LDFs which have a simple geometric origin and can be interpreted as dynamical phase transitions. We also use the small-deviation limit of the geometrical optics to reconstruct the distribution of typical fluctuations. We argue that, in stories 2 and 3, this is the Ferrari-Spohn distribution.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ab3f0f</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6709-8140</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2019-10, Vol.52 (41), p.415001
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ab3f0f
source Institute of Physics Journals
subjects Brownian motion
dynamical phase transitions
large deviations
optimal fluctuation method
title Geometrical optics of constrained Brownian motion: three short stories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20optics%20of%20constrained%20Brownian%20motion:%20three%20short%20stories&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Meerson,%20Baruch&rft.date=2019-10-11&rft.volume=52&rft.issue=41&rft.spage=415001&rft.pages=415001-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ab3f0f&rft_dat=%3Ciop_cross%3Eaab3f0f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true