Truncation of the reflection algebra and the Hahn algebra

In the context of connections between algebras coming from quantum integrable systems and algebras associated to the orthogonal polynomials of the Askey scheme, we prove that the truncated reflection algebra attached to the Yangian of sl2 is isomorphic to the Hahn algebra. As a by-product, we provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2019-08, Vol.52 (35), p.35
Hauptverfasser: Crampé, Nicolas, Ragoucy, Eric, Vinet, Luc, Zhedanov, Alexei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 35
container_start_page 35
container_title Journal of physics. A, Mathematical and theoretical
container_volume 52
creator Crampé, Nicolas
Ragoucy, Eric
Vinet, Luc
Zhedanov, Alexei
description In the context of connections between algebras coming from quantum integrable systems and algebras associated to the orthogonal polynomials of the Askey scheme, we prove that the truncated reflection algebra attached to the Yangian of sl2 is isomorphic to the Hahn algebra. As a by-product, we provide a general set-up based on Euler polynomials to study truncations of reflection algebras.
doi_str_mv 10.1088/1751-8121/ab32f8
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ab32f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02305525v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e0849bf2b88258872a31a4713d2952c2a5622fbf10c3fb47bc95845c4008551e3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFbvHnMVjJ2dzTSbYylqhYKXel5mt7s2JSZl0wr-e5NGcvM0wzfvDbwnxL2EJwlaz2ROMtUS5YytwqAvxGREl-Mu1bW4ads9AGVQ4EQUm3iqHR_Lpk6akBx3Pok-VN6dCVef3kZOuN6eTyvejfBWXAWuWn_3N6fi4-V5s1yl6_fXt-VinTpF82PqQWeFDWi1RtI6R1aSs1yqLRaEDpnmiMEGCU4Fm-XWFaQzchmAJpJeTcXD8HfHlTnE8ovjj2m4NKvF2vQMUAER0rfstDBoXWzatgsyGiSYvibT92D6TsxQU2d5HCxlczD75hTrLsz_8l_L2mYZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Truncation of the reflection algebra and the Hahn algebra</title><source>Institute of Physics Journals</source><creator>Crampé, Nicolas ; Ragoucy, Eric ; Vinet, Luc ; Zhedanov, Alexei</creator><creatorcontrib>Crampé, Nicolas ; Ragoucy, Eric ; Vinet, Luc ; Zhedanov, Alexei</creatorcontrib><description>In the context of connections between algebras coming from quantum integrable systems and algebras associated to the orthogonal polynomials of the Askey scheme, we prove that the truncated reflection algebra attached to the Yangian of sl2 is isomorphic to the Hahn algebra. As a by-product, we provide a general set-up based on Euler polynomials to study truncations of reflection algebras.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ab32f8</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Hahn algebra ; Mathematical Physics ; Mathematics ; Quantum Algebra ; reflection algebras ; Yangians</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2019-08, Vol.52 (35), p.35</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e0849bf2b88258872a31a4713d2952c2a5622fbf10c3fb47bc95845c4008551e3</citedby><cites>FETCH-LOGICAL-c356t-e0849bf2b88258872a31a4713d2952c2a5622fbf10c3fb47bc95845c4008551e3</cites><orcidid>0000-0002-3754-4074 ; 0000-0002-9350-8254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ab32f8/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://univ-tours.hal.science/hal-02305525$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Crampé, Nicolas</creatorcontrib><creatorcontrib>Ragoucy, Eric</creatorcontrib><creatorcontrib>Vinet, Luc</creatorcontrib><creatorcontrib>Zhedanov, Alexei</creatorcontrib><title>Truncation of the reflection algebra and the Hahn algebra</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>In the context of connections between algebras coming from quantum integrable systems and algebras associated to the orthogonal polynomials of the Askey scheme, we prove that the truncated reflection algebra attached to the Yangian of sl2 is isomorphic to the Hahn algebra. As a by-product, we provide a general set-up based on Euler polynomials to study truncations of reflection algebras.</description><subject>Hahn algebra</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Quantum Algebra</subject><subject>reflection algebras</subject><subject>Yangians</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFbvHnMVjJ2dzTSbYylqhYKXel5mt7s2JSZl0wr-e5NGcvM0wzfvDbwnxL2EJwlaz2ROMtUS5YytwqAvxGREl-Mu1bW4ads9AGVQ4EQUm3iqHR_Lpk6akBx3Pok-VN6dCVef3kZOuN6eTyvejfBWXAWuWn_3N6fi4-V5s1yl6_fXt-VinTpF82PqQWeFDWi1RtI6R1aSs1yqLRaEDpnmiMEGCU4Fm-XWFaQzchmAJpJeTcXD8HfHlTnE8ovjj2m4NKvF2vQMUAER0rfstDBoXWzatgsyGiSYvibT92D6TsxQU2d5HCxlczD75hTrLsz_8l_L2mYZ</recordid><startdate>20190830</startdate><enddate>20190830</enddate><creator>Crampé, Nicolas</creator><creator>Ragoucy, Eric</creator><creator>Vinet, Luc</creator><creator>Zhedanov, Alexei</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3754-4074</orcidid><orcidid>https://orcid.org/0000-0002-9350-8254</orcidid></search><sort><creationdate>20190830</creationdate><title>Truncation of the reflection algebra and the Hahn algebra</title><author>Crampé, Nicolas ; Ragoucy, Eric ; Vinet, Luc ; Zhedanov, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e0849bf2b88258872a31a4713d2952c2a5622fbf10c3fb47bc95845c4008551e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Hahn algebra</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Quantum Algebra</topic><topic>reflection algebras</topic><topic>Yangians</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crampé, Nicolas</creatorcontrib><creatorcontrib>Ragoucy, Eric</creatorcontrib><creatorcontrib>Vinet, Luc</creatorcontrib><creatorcontrib>Zhedanov, Alexei</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crampé, Nicolas</au><au>Ragoucy, Eric</au><au>Vinet, Luc</au><au>Zhedanov, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Truncation of the reflection algebra and the Hahn algebra</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2019-08-30</date><risdate>2019</risdate><volume>52</volume><issue>35</issue><spage>35</spage><pages>35-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>In the context of connections between algebras coming from quantum integrable systems and algebras associated to the orthogonal polynomials of the Askey scheme, we prove that the truncated reflection algebra attached to the Yangian of sl2 is isomorphic to the Hahn algebra. As a by-product, we provide a general set-up based on Euler polynomials to study truncations of reflection algebras.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ab32f8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3754-4074</orcidid><orcidid>https://orcid.org/0000-0002-9350-8254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2019-08, Vol.52 (35), p.35
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ab32f8
source Institute of Physics Journals
subjects Hahn algebra
Mathematical Physics
Mathematics
Quantum Algebra
reflection algebras
Yangians
title Truncation of the reflection algebra and the Hahn algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Truncation%20of%20the%20reflection%20algebra%20and%20the%20Hahn%20algebra&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Cramp%C3%A9,%20Nicolas&rft.date=2019-08-30&rft.volume=52&rft.issue=35&rft.spage=35&rft.pages=35-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ab32f8&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02305525v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true