Analytical approximation to the multidimensional Fokker-Planck equation with steady state
The Fokker-Planck equation is a key ingredient of many models in physics, and related subjects, and arises in a diverse array of settings. Analytical solutions are limited to special cases, and resorting to numerical simulation is often the only route available; in high dimensions, or for parametric...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2019-02, Vol.52 (8), p.85002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 85002 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 52 |
creator | Martin, R J Craster, R V Pannier, A Kearney, M J |
description | The Fokker-Planck equation is a key ingredient of many models in physics, and related subjects, and arises in a diverse array of settings. Analytical solutions are limited to special cases, and resorting to numerical simulation is often the only route available; in high dimensions, or for parametric studies, this can become unwieldy. Using asymptotic techniques, that draw upon the known Ornstein-Uhlenbeck (OU) case, we consider a mean-reverting system and obtain its representation as a product of terms, representing short-term, long-term, and medium-term behaviour. A further reduction yields a simple explicit formula, both intuitive in terms of its physical origin and fast to evaluate. We illustrate a breadth of cases, some of which are 'far' from the OU model, such as double-well potentials, and even then, perhaps surprisingly, the approximation still gives very good results when compared with numerical simulations. Both one- and two-dimensional examples are considered. |
doi_str_mv | 10.1088/1751-8121/aafea3 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_aafea3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03885941v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-dd2b7898df031ed6df2c701806c38d12ca4176cedba59f0d87379001c0af7ef83</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWwM2ZhQCL0HDeJM1YVpUiVYICBybr6Q3Wb1iF2gf57HAV1Qkx3ev28J-sh5JrCPQXOR7TMacppRkeIRiM7IYNjdHrcKTsnF96vAfIxVNmAvE92WB-ClVgn2DSt-7ZbDNbtkuCSsNLJdl8Hq-xW73xMIzVzm41u05cad3KT6I99j3_ZsEp80KgOcWDQl-TMYO311e8ckrfZw-t0ni6eH5-mk0UqGS9CqlS2LHnFlQFGtSqUyWQJlEMR3xXNJI5pWUitlphXBhQvWVkBUAloSm04G5Lb_u4Ka9G08fvtQTi0Yj5ZiC4DxnlejeknjSz0rGyd9602xwIF0WkUnSfRORO9xli56yvWNWLt9m104P_Db_7AUeSZ4AJ4DpCJRhn2A90AglM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical approximation to the multidimensional Fokker-Planck equation with steady state</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Martin, R J ; Craster, R V ; Pannier, A ; Kearney, M J</creator><creatorcontrib>Martin, R J ; Craster, R V ; Pannier, A ; Kearney, M J</creatorcontrib><description>The Fokker-Planck equation is a key ingredient of many models in physics, and related subjects, and arises in a diverse array of settings. Analytical solutions are limited to special cases, and resorting to numerical simulation is often the only route available; in high dimensions, or for parametric studies, this can become unwieldy. Using asymptotic techniques, that draw upon the known Ornstein-Uhlenbeck (OU) case, we consider a mean-reverting system and obtain its representation as a product of terms, representing short-term, long-term, and medium-term behaviour. A further reduction yields a simple explicit formula, both intuitive in terms of its physical origin and fast to evaluate. We illustrate a breadth of cases, some of which are 'far' from the OU model, such as double-well potentials, and even then, perhaps surprisingly, the approximation still gives very good results when compared with numerical simulations. Both one- and two-dimensional examples are considered.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aafea3</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Fokker-Planck equation ; Mathematics ; mean reversion ; stochastic processes</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2019-02, Vol.52 (8), p.85002</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-dd2b7898df031ed6df2c701806c38d12ca4176cedba59f0d87379001c0af7ef83</citedby><cites>FETCH-LOGICAL-c386t-dd2b7898df031ed6df2c701806c38d12ca4176cedba59f0d87379001c0af7ef83</cites><orcidid>0000-0002-9085-8638 ; 0000-0002-9272-1360 ; 0000-0001-9799-9639 ; 0000-0002-7328-7482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aafea3/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03885941$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, R J</creatorcontrib><creatorcontrib>Craster, R V</creatorcontrib><creatorcontrib>Pannier, A</creatorcontrib><creatorcontrib>Kearney, M J</creatorcontrib><title>Analytical approximation to the multidimensional Fokker-Planck equation with steady state</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The Fokker-Planck equation is a key ingredient of many models in physics, and related subjects, and arises in a diverse array of settings. Analytical solutions are limited to special cases, and resorting to numerical simulation is often the only route available; in high dimensions, or for parametric studies, this can become unwieldy. Using asymptotic techniques, that draw upon the known Ornstein-Uhlenbeck (OU) case, we consider a mean-reverting system and obtain its representation as a product of terms, representing short-term, long-term, and medium-term behaviour. A further reduction yields a simple explicit formula, both intuitive in terms of its physical origin and fast to evaluate. We illustrate a breadth of cases, some of which are 'far' from the OU model, such as double-well potentials, and even then, perhaps surprisingly, the approximation still gives very good results when compared with numerical simulations. Both one- and two-dimensional examples are considered.</description><subject>Fokker-Planck equation</subject><subject>Mathematics</subject><subject>mean reversion</subject><subject>stochastic processes</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kD1PwzAQhi0EEqWwM2ZhQCL0HDeJM1YVpUiVYICBybr6Q3Wb1iF2gf57HAV1Qkx3ev28J-sh5JrCPQXOR7TMacppRkeIRiM7IYNjdHrcKTsnF96vAfIxVNmAvE92WB-ClVgn2DSt-7ZbDNbtkuCSsNLJdl8Hq-xW73xMIzVzm41u05cad3KT6I99j3_ZsEp80KgOcWDQl-TMYO311e8ckrfZw-t0ni6eH5-mk0UqGS9CqlS2LHnFlQFGtSqUyWQJlEMR3xXNJI5pWUitlphXBhQvWVkBUAloSm04G5Lb_u4Ka9G08fvtQTi0Yj5ZiC4DxnlejeknjSz0rGyd9602xwIF0WkUnSfRORO9xli56yvWNWLt9m104P_Db_7AUeSZ4AJ4DpCJRhn2A90AglM</recordid><startdate>20190222</startdate><enddate>20190222</enddate><creator>Martin, R J</creator><creator>Craster, R V</creator><creator>Pannier, A</creator><creator>Kearney, M J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9085-8638</orcidid><orcidid>https://orcid.org/0000-0002-9272-1360</orcidid><orcidid>https://orcid.org/0000-0001-9799-9639</orcidid><orcidid>https://orcid.org/0000-0002-7328-7482</orcidid></search><sort><creationdate>20190222</creationdate><title>Analytical approximation to the multidimensional Fokker-Planck equation with steady state</title><author>Martin, R J ; Craster, R V ; Pannier, A ; Kearney, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-dd2b7898df031ed6df2c701806c38d12ca4176cedba59f0d87379001c0af7ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Fokker-Planck equation</topic><topic>Mathematics</topic><topic>mean reversion</topic><topic>stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, R J</creatorcontrib><creatorcontrib>Craster, R V</creatorcontrib><creatorcontrib>Pannier, A</creatorcontrib><creatorcontrib>Kearney, M J</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, R J</au><au>Craster, R V</au><au>Pannier, A</au><au>Kearney, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical approximation to the multidimensional Fokker-Planck equation with steady state</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2019-02-22</date><risdate>2019</risdate><volume>52</volume><issue>8</issue><spage>85002</spage><pages>85002-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The Fokker-Planck equation is a key ingredient of many models in physics, and related subjects, and arises in a diverse array of settings. Analytical solutions are limited to special cases, and resorting to numerical simulation is often the only route available; in high dimensions, or for parametric studies, this can become unwieldy. Using asymptotic techniques, that draw upon the known Ornstein-Uhlenbeck (OU) case, we consider a mean-reverting system and obtain its representation as a product of terms, representing short-term, long-term, and medium-term behaviour. A further reduction yields a simple explicit formula, both intuitive in terms of its physical origin and fast to evaluate. We illustrate a breadth of cases, some of which are 'far' from the OU model, such as double-well potentials, and even then, perhaps surprisingly, the approximation still gives very good results when compared with numerical simulations. Both one- and two-dimensional examples are considered.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aafea3</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-9085-8638</orcidid><orcidid>https://orcid.org/0000-0002-9272-1360</orcidid><orcidid>https://orcid.org/0000-0001-9799-9639</orcidid><orcidid>https://orcid.org/0000-0002-7328-7482</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2019-02, Vol.52 (8), p.85002 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_aafea3 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Fokker-Planck equation Mathematics mean reversion stochastic processes |
title | Analytical approximation to the multidimensional Fokker-Planck equation with steady state |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20approximation%20to%20the%20multidimensional%20Fokker-Planck%20equation%20with%20steady%20state&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Martin,%20R%20J&rft.date=2019-02-22&rft.volume=52&rft.issue=8&rft.spage=85002&rft.pages=85002-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aafea3&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03885941v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |