Run and tumble particle under resetting: a renewal approach

We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2018-11, Vol.51 (47), p.475003
Hauptverfasser: Evans, Martin R, Majumdar, Satya N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 47
container_start_page 475003
container_title Journal of physics. A, Mathematical and theoretical
container_volume 51
creator Evans, Martin R
Majumdar, Satya N
description We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the particle's velocity is reversed with probability η. The case corresponds to position resetting and velocity randomization whereas corresponds to position-only resetting. We show that, beginning from symmetric initial conditions, the stationary state does not depend on η i.e. it is independent of the velocity resetting protocol. However, in the presence of an absorbing boundary at the origin, the survival probability and mean time to absorption do depend on the velocity resetting protocol. Using a renewal equation approach, we show that the mean time to absorption is always less for velocity randomization than for position-only resetting.
doi_str_mv 10.1088/1751-8121/aae74e
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_aae74e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01963299v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-14e38b27b4781a7a656f9d1fd4aefe31ed86e6d0315597378778f6d15c760d1e3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbvHnMVjN3JZj-ip1LUCgFB9LxMshObkiZhkyj-9yZEevM0bx7vDcyPsWvgd8CNWYGWEBqIYIVIOqYTtjhap0cN4pxddN2ecxnzJFqwh7ehDrB2QT8csoqCFn1f5qMYakc-8NRR35f1532A41LTN1YBtq1vMN9dsrMCq46u_uaSfTw9vm-2Yfr6_LJZp2EupOpDiEmYLNJZrA2gRiVVkTgoXIxUkAByRpFyXICUiRbaaG0K5UDmWnEHJJbsZr67w8q2vjyg_7ENlna7Tu3kcUiUiJLkC8Ysn7O5b7rOU3EsALcTKDuRsBMVO4MaK7dzpWxau28GX4_P_B__BewlaIk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Run and tumble particle under resetting: a renewal approach</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Evans, Martin R ; Majumdar, Satya N</creator><creatorcontrib>Evans, Martin R ; Majumdar, Satya N</creatorcontrib><description>We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the particle's velocity is reversed with probability η. The case corresponds to position resetting and velocity randomization whereas corresponds to position-only resetting. We show that, beginning from symmetric initial conditions, the stationary state does not depend on η i.e. it is independent of the velocity resetting protocol. However, in the presence of an absorbing boundary at the origin, the survival probability and mean time to absorption do depend on the velocity resetting protocol. Using a renewal equation approach, we show that the mean time to absorption is always less for velocity randomization than for position-only resetting.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aae74e</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>diffusion ; mean first passage time ; Physics ; run and tumble dynamics ; stochastic resetting</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2018-11, Vol.51 (47), p.475003</ispartof><rights>2018 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-14e38b27b4781a7a656f9d1fd4aefe31ed86e6d0315597378778f6d15c760d1e3</citedby><cites>FETCH-LOGICAL-c356t-14e38b27b4781a7a656f9d1fd4aefe31ed86e6d0315597378778f6d15c760d1e3</cites><orcidid>0000-0002-4333-4671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aae74e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01963299$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, Martin R</creatorcontrib><creatorcontrib>Majumdar, Satya N</creatorcontrib><title>Run and tumble particle under resetting: a renewal approach</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the particle's velocity is reversed with probability η. The case corresponds to position resetting and velocity randomization whereas corresponds to position-only resetting. We show that, beginning from symmetric initial conditions, the stationary state does not depend on η i.e. it is independent of the velocity resetting protocol. However, in the presence of an absorbing boundary at the origin, the survival probability and mean time to absorption do depend on the velocity resetting protocol. Using a renewal equation approach, we show that the mean time to absorption is always less for velocity randomization than for position-only resetting.</description><subject>diffusion</subject><subject>mean first passage time</subject><subject>Physics</subject><subject>run and tumble dynamics</subject><subject>stochastic resetting</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFbvHnMVjN3JZj-ip1LUCgFB9LxMshObkiZhkyj-9yZEevM0bx7vDcyPsWvgd8CNWYGWEBqIYIVIOqYTtjhap0cN4pxddN2ecxnzJFqwh7ehDrB2QT8csoqCFn1f5qMYakc-8NRR35f1532A41LTN1YBtq1vMN9dsrMCq46u_uaSfTw9vm-2Yfr6_LJZp2EupOpDiEmYLNJZrA2gRiVVkTgoXIxUkAByRpFyXICUiRbaaG0K5UDmWnEHJJbsZr67w8q2vjyg_7ENlna7Tu3kcUiUiJLkC8Ysn7O5b7rOU3EsALcTKDuRsBMVO4MaK7dzpWxau28GX4_P_B__BewlaIk</recordid><startdate>20181123</startdate><enddate>20181123</enddate><creator>Evans, Martin R</creator><creator>Majumdar, Satya N</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4333-4671</orcidid></search><sort><creationdate>20181123</creationdate><title>Run and tumble particle under resetting: a renewal approach</title><author>Evans, Martin R ; Majumdar, Satya N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-14e38b27b4781a7a656f9d1fd4aefe31ed86e6d0315597378778f6d15c760d1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>diffusion</topic><topic>mean first passage time</topic><topic>Physics</topic><topic>run and tumble dynamics</topic><topic>stochastic resetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Martin R</creatorcontrib><creatorcontrib>Majumdar, Satya N</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Martin R</au><au>Majumdar, Satya N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Run and tumble particle under resetting: a renewal approach</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2018-11-23</date><risdate>2018</risdate><volume>51</volume><issue>47</issue><spage>475003</spage><pages>475003-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the particle's velocity is reversed with probability η. The case corresponds to position resetting and velocity randomization whereas corresponds to position-only resetting. We show that, beginning from symmetric initial conditions, the stationary state does not depend on η i.e. it is independent of the velocity resetting protocol. However, in the presence of an absorbing boundary at the origin, the survival probability and mean time to absorption do depend on the velocity resetting protocol. Using a renewal equation approach, we show that the mean time to absorption is always less for velocity randomization than for position-only resetting.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aae74e</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4333-4671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2018-11, Vol.51 (47), p.475003
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_aae74e
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects diffusion
mean first passage time
Physics
run and tumble dynamics
stochastic resetting
title Run and tumble particle under resetting: a renewal approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Run%20and%20tumble%20particle%20under%20resetting:%20a%20renewal%20approach&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Evans,%20Martin%20R&rft.date=2018-11-23&rft.volume=51&rft.issue=47&rft.spage=475003&rft.pages=475003-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aae74e&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01963299v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true