Run and tumble particle under resetting: a renewal approach
We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the partic...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2018-11, Vol.51 (47), p.475003 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 47 |
container_start_page | 475003 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 51 |
creator | Evans, Martin R Majumdar, Satya N |
description | We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the particle's velocity is reversed with probability η. The case corresponds to position resetting and velocity randomization whereas corresponds to position-only resetting. We show that, beginning from symmetric initial conditions, the stationary state does not depend on η i.e. it is independent of the velocity resetting protocol. However, in the presence of an absorbing boundary at the origin, the survival probability and mean time to absorption do depend on the velocity resetting protocol. Using a renewal equation approach, we show that the mean time to absorption is always less for velocity randomization than for position-only resetting. |
doi_str_mv | 10.1088/1751-8121/aae74e |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_aae74e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01963299v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-14e38b27b4781a7a656f9d1fd4aefe31ed86e6d0315597378778f6d15c760d1e3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbvHnMVjN3JZj-ip1LUCgFB9LxMshObkiZhkyj-9yZEevM0bx7vDcyPsWvgd8CNWYGWEBqIYIVIOqYTtjhap0cN4pxddN2ecxnzJFqwh7ehDrB2QT8csoqCFn1f5qMYakc-8NRR35f1532A41LTN1YBtq1vMN9dsrMCq46u_uaSfTw9vm-2Yfr6_LJZp2EupOpDiEmYLNJZrA2gRiVVkTgoXIxUkAByRpFyXICUiRbaaG0K5UDmWnEHJJbsZr67w8q2vjyg_7ENlna7Tu3kcUiUiJLkC8Ysn7O5b7rOU3EsALcTKDuRsBMVO4MaK7dzpWxau28GX4_P_B__BewlaIk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Run and tumble particle under resetting: a renewal approach</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Evans, Martin R ; Majumdar, Satya N</creator><creatorcontrib>Evans, Martin R ; Majumdar, Satya N</creatorcontrib><description>We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the particle's velocity is reversed with probability η. The case corresponds to position resetting and velocity randomization whereas corresponds to position-only resetting. We show that, beginning from symmetric initial conditions, the stationary state does not depend on η i.e. it is independent of the velocity resetting protocol. However, in the presence of an absorbing boundary at the origin, the survival probability and mean time to absorption do depend on the velocity resetting protocol. Using a renewal equation approach, we show that the mean time to absorption is always less for velocity randomization than for position-only resetting.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aae74e</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>diffusion ; mean first passage time ; Physics ; run and tumble dynamics ; stochastic resetting</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2018-11, Vol.51 (47), p.475003</ispartof><rights>2018 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-14e38b27b4781a7a656f9d1fd4aefe31ed86e6d0315597378778f6d15c760d1e3</citedby><cites>FETCH-LOGICAL-c356t-14e38b27b4781a7a656f9d1fd4aefe31ed86e6d0315597378778f6d15c760d1e3</cites><orcidid>0000-0002-4333-4671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aae74e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01963299$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, Martin R</creatorcontrib><creatorcontrib>Majumdar, Satya N</creatorcontrib><title>Run and tumble particle under resetting: a renewal approach</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the particle's velocity is reversed with probability η. The case corresponds to position resetting and velocity randomization whereas corresponds to position-only resetting. We show that, beginning from symmetric initial conditions, the stationary state does not depend on η i.e. it is independent of the velocity resetting protocol. However, in the presence of an absorbing boundary at the origin, the survival probability and mean time to absorption do depend on the velocity resetting protocol. Using a renewal equation approach, we show that the mean time to absorption is always less for velocity randomization than for position-only resetting.</description><subject>diffusion</subject><subject>mean first passage time</subject><subject>Physics</subject><subject>run and tumble dynamics</subject><subject>stochastic resetting</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFbvHnMVjN3JZj-ip1LUCgFB9LxMshObkiZhkyj-9yZEevM0bx7vDcyPsWvgd8CNWYGWEBqIYIVIOqYTtjhap0cN4pxddN2ecxnzJFqwh7ehDrB2QT8csoqCFn1f5qMYakc-8NRR35f1532A41LTN1YBtq1vMN9dsrMCq46u_uaSfTw9vm-2Yfr6_LJZp2EupOpDiEmYLNJZrA2gRiVVkTgoXIxUkAByRpFyXICUiRbaaG0K5UDmWnEHJJbsZr67w8q2vjyg_7ENlna7Tu3kcUiUiJLkC8Ysn7O5b7rOU3EsALcTKDuRsBMVO4MaK7dzpWxau28GX4_P_B__BewlaIk</recordid><startdate>20181123</startdate><enddate>20181123</enddate><creator>Evans, Martin R</creator><creator>Majumdar, Satya N</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4333-4671</orcidid></search><sort><creationdate>20181123</creationdate><title>Run and tumble particle under resetting: a renewal approach</title><author>Evans, Martin R ; Majumdar, Satya N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-14e38b27b4781a7a656f9d1fd4aefe31ed86e6d0315597378778f6d15c760d1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>diffusion</topic><topic>mean first passage time</topic><topic>Physics</topic><topic>run and tumble dynamics</topic><topic>stochastic resetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Martin R</creatorcontrib><creatorcontrib>Majumdar, Satya N</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Martin R</au><au>Majumdar, Satya N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Run and tumble particle under resetting: a renewal approach</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2018-11-23</date><risdate>2018</risdate><volume>51</volume><issue>47</issue><spage>475003</spage><pages>475003-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We consider a particle undergoing run and tumble dynamics, in which its velocity stochastically reverses, in one dimension. We study the addition of a Poissonian resetting process occurring with rate r. At a reset event the particle's position is returned to the resetting site Xr and the particle's velocity is reversed with probability η. The case corresponds to position resetting and velocity randomization whereas corresponds to position-only resetting. We show that, beginning from symmetric initial conditions, the stationary state does not depend on η i.e. it is independent of the velocity resetting protocol. However, in the presence of an absorbing boundary at the origin, the survival probability and mean time to absorption do depend on the velocity resetting protocol. Using a renewal equation approach, we show that the mean time to absorption is always less for velocity randomization than for position-only resetting.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aae74e</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4333-4671</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2018-11, Vol.51 (47), p.475003 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_aae74e |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | diffusion mean first passage time Physics run and tumble dynamics stochastic resetting |
title | Run and tumble particle under resetting: a renewal approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Run%20and%20tumble%20particle%20under%20resetting:%20a%20renewal%20approach&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Evans,%20Martin%20R&rft.date=2018-11-23&rft.volume=51&rft.issue=47&rft.spage=475003&rft.pages=475003-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aae74e&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01963299v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |