Exploring the interplay between soil thermal and hydrological changes and their impact on carbon fluxes in permafrost ecosystems
Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical i...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2024-07, Vol.19 (7), p.74003 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 74003 |
container_title | Environmental research letters |
container_volume | 19 |
creator | Briones, Valeria Jafarov, Elchin E Genet, Hélène Rogers, Brendan M Rutter, Ruth M Carman, Tobey B Clein, Joy Euschkirchen, Eugénie S Schuur, Edward AG Watts, Jennifer D Natali, Susan M |
description | Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO
2
fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO
2
emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m
2
/month compared to observational mean of 22.01 ± 5.67 gC/m
2
/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m
2
/month compared to observation mean of 11.9 ± 4.45 gC/m
2
/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system. |
doi_str_mv | 10.1088/1748-9326/ad50ed |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_9326_ad50ed</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_daf5467da4a54fc7be26f39582f9a47b</doaj_id><sourcerecordid>3066900632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-a1498452528264a95551bd3bcd6047747066bfc1e0894b8465c0926b120c26423</originalsourceid><addsrcrecordid>eNp9UT1vFDEQXSGQCCF9SksUNByxvf4sURQgUiSapLb8eeeTb73YPpHr-Ol4syhQIKoZvXnvzYzeMFwi-BFBIa4QJ2IjR8yutKPQuxfD2TP08q_-9fCm1j2ElFAuzoafN49zyiVOW9B2HsSp-TInfQLGtx_eT6DmmJZROegE9OTA7uRKTnkbbQfsTk9bX58GnRQLiIdZ2wbyBKwuppeQjo-dEScwLyah5NqAt7meavOH-nZ4FXSq_uJ3PR8ePt_cX3_d3H37cnv96W5jCURtoxGRglBMscCMaEkpRcaNxjoGCeeEQ8ZMsMhDIYkRhFELJWYGYWi7AI_nw-3q67Leq7nEgy4nlXVUT0AuW6VLizZ55XSghHGniaYkWG48ZmGUVOAgNeGme71bveaSvx99bWqfj2Xq56ux3yEhZOOyEa4s21-uxYfnrQiqJTO1hKKWUNSaWZd8WCUxz388_0N__w-6L0khqbiCnEA4qtmF8Rd_hqae</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066900632</pqid></control><display><type>article</type><title>Exploring the interplay between soil thermal and hydrological changes and their impact on carbon fluxes in permafrost ecosystems</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Briones, Valeria ; Jafarov, Elchin E ; Genet, Hélène ; Rogers, Brendan M ; Rutter, Ruth M ; Carman, Tobey B ; Clein, Joy ; Euschkirchen, Eugénie S ; Schuur, Edward AG ; Watts, Jennifer D ; Natali, Susan M</creator><creatorcontrib>Briones, Valeria ; Jafarov, Elchin E ; Genet, Hélène ; Rogers, Brendan M ; Rutter, Ruth M ; Carman, Tobey B ; Clein, Joy ; Euschkirchen, Eugénie S ; Schuur, Edward AG ; Watts, Jennifer D ; Natali, Susan M</creatorcontrib><description>Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO
2
fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO
2
emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m
2
/month compared to observational mean of 22.01 ± 5.67 gC/m
2
/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m
2
/month compared to observation mean of 11.9 ± 4.45 gC/m
2
/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad50ed</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Arctic tundra ; Atmosphere ; Biogeochemistry ; Biosphere ; Carbon ; Carbon dioxide ; Carbon dioxide emissions ; Climate system ; Drainage ; Ecological monitoring ; Ecosystems ; Fluxes ; Global climate ; Greenhouse effect ; Greenhouse gases ; Melting ; Organic carbon ; Organic soils ; parameter sensitivity ; Permafrost ; permafrost-thaw ; Physical properties ; Soil physical properties ; Soil properties ; Soils ; Taiga & tundra ; terrestrial biosphere mode ; Thawing ; Tundra ; Vegetation</subject><ispartof>Environmental research letters, 2024-07, Vol.19 (7), p.74003</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-a1498452528264a95551bd3bcd6047747066bfc1e0894b8465c0926b120c26423</cites><orcidid>0000-0002-5649-851X ; 0000-0001-7207-8999 ; 0000-0003-4537-9563 ; 0000-0001-6711-8466 ; 0000-0002-1096-2436 ; 0000-0002-8310-3261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/ad50ed/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Briones, Valeria</creatorcontrib><creatorcontrib>Jafarov, Elchin E</creatorcontrib><creatorcontrib>Genet, Hélène</creatorcontrib><creatorcontrib>Rogers, Brendan M</creatorcontrib><creatorcontrib>Rutter, Ruth M</creatorcontrib><creatorcontrib>Carman, Tobey B</creatorcontrib><creatorcontrib>Clein, Joy</creatorcontrib><creatorcontrib>Euschkirchen, Eugénie S</creatorcontrib><creatorcontrib>Schuur, Edward AG</creatorcontrib><creatorcontrib>Watts, Jennifer D</creatorcontrib><creatorcontrib>Natali, Susan M</creatorcontrib><title>Exploring the interplay between soil thermal and hydrological changes and their impact on carbon fluxes in permafrost ecosystems</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO
2
fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO
2
emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m
2
/month compared to observational mean of 22.01 ± 5.67 gC/m
2
/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m
2
/month compared to observation mean of 11.9 ± 4.45 gC/m
2
/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system.</description><subject>Arctic tundra</subject><subject>Atmosphere</subject><subject>Biogeochemistry</subject><subject>Biosphere</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Climate system</subject><subject>Drainage</subject><subject>Ecological monitoring</subject><subject>Ecosystems</subject><subject>Fluxes</subject><subject>Global climate</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Melting</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>parameter sensitivity</subject><subject>Permafrost</subject><subject>permafrost-thaw</subject><subject>Physical properties</subject><subject>Soil physical properties</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Taiga & tundra</subject><subject>terrestrial biosphere mode</subject><subject>Thawing</subject><subject>Tundra</subject><subject>Vegetation</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9UT1vFDEQXSGQCCF9SksUNByxvf4sURQgUiSapLb8eeeTb73YPpHr-Ol4syhQIKoZvXnvzYzeMFwi-BFBIa4QJ2IjR8yutKPQuxfD2TP08q_-9fCm1j2ElFAuzoafN49zyiVOW9B2HsSp-TInfQLGtx_eT6DmmJZROegE9OTA7uRKTnkbbQfsTk9bX58GnRQLiIdZ2wbyBKwuppeQjo-dEScwLyah5NqAt7meavOH-nZ4FXSq_uJ3PR8ePt_cX3_d3H37cnv96W5jCURtoxGRglBMscCMaEkpRcaNxjoGCeeEQ8ZMsMhDIYkRhFELJWYGYWi7AI_nw-3q67Leq7nEgy4nlXVUT0AuW6VLizZ55XSghHGniaYkWG48ZmGUVOAgNeGme71bveaSvx99bWqfj2Xq56ux3yEhZOOyEa4s21-uxYfnrQiqJTO1hKKWUNSaWZd8WCUxz388_0N__w-6L0khqbiCnEA4qtmF8Rd_hqae</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Briones, Valeria</creator><creator>Jafarov, Elchin E</creator><creator>Genet, Hélène</creator><creator>Rogers, Brendan M</creator><creator>Rutter, Ruth M</creator><creator>Carman, Tobey B</creator><creator>Clein, Joy</creator><creator>Euschkirchen, Eugénie S</creator><creator>Schuur, Edward AG</creator><creator>Watts, Jennifer D</creator><creator>Natali, Susan M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5649-851X</orcidid><orcidid>https://orcid.org/0000-0001-7207-8999</orcidid><orcidid>https://orcid.org/0000-0003-4537-9563</orcidid><orcidid>https://orcid.org/0000-0001-6711-8466</orcidid><orcidid>https://orcid.org/0000-0002-1096-2436</orcidid><orcidid>https://orcid.org/0000-0002-8310-3261</orcidid></search><sort><creationdate>20240701</creationdate><title>Exploring the interplay between soil thermal and hydrological changes and their impact on carbon fluxes in permafrost ecosystems</title><author>Briones, Valeria ; Jafarov, Elchin E ; Genet, Hélène ; Rogers, Brendan M ; Rutter, Ruth M ; Carman, Tobey B ; Clein, Joy ; Euschkirchen, Eugénie S ; Schuur, Edward AG ; Watts, Jennifer D ; Natali, Susan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-a1498452528264a95551bd3bcd6047747066bfc1e0894b8465c0926b120c26423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arctic tundra</topic><topic>Atmosphere</topic><topic>Biogeochemistry</topic><topic>Biosphere</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Climate system</topic><topic>Drainage</topic><topic>Ecological monitoring</topic><topic>Ecosystems</topic><topic>Fluxes</topic><topic>Global climate</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Melting</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>parameter sensitivity</topic><topic>Permafrost</topic><topic>permafrost-thaw</topic><topic>Physical properties</topic><topic>Soil physical properties</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Taiga & tundra</topic><topic>terrestrial biosphere mode</topic><topic>Thawing</topic><topic>Tundra</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briones, Valeria</creatorcontrib><creatorcontrib>Jafarov, Elchin E</creatorcontrib><creatorcontrib>Genet, Hélène</creatorcontrib><creatorcontrib>Rogers, Brendan M</creatorcontrib><creatorcontrib>Rutter, Ruth M</creatorcontrib><creatorcontrib>Carman, Tobey B</creatorcontrib><creatorcontrib>Clein, Joy</creatorcontrib><creatorcontrib>Euschkirchen, Eugénie S</creatorcontrib><creatorcontrib>Schuur, Edward AG</creatorcontrib><creatorcontrib>Watts, Jennifer D</creatorcontrib><creatorcontrib>Natali, Susan M</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briones, Valeria</au><au>Jafarov, Elchin E</au><au>Genet, Hélène</au><au>Rogers, Brendan M</au><au>Rutter, Ruth M</au><au>Carman, Tobey B</au><au>Clein, Joy</au><au>Euschkirchen, Eugénie S</au><au>Schuur, Edward AG</au><au>Watts, Jennifer D</au><au>Natali, Susan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the interplay between soil thermal and hydrological changes and their impact on carbon fluxes in permafrost ecosystems</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>74003</spage><pages>74003-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO
2
fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO
2
emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m
2
/month compared to observational mean of 22.01 ± 5.67 gC/m
2
/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m
2
/month compared to observation mean of 11.9 ± 4.45 gC/m
2
/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad50ed</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5649-851X</orcidid><orcidid>https://orcid.org/0000-0001-7207-8999</orcidid><orcidid>https://orcid.org/0000-0003-4537-9563</orcidid><orcidid>https://orcid.org/0000-0001-6711-8466</orcidid><orcidid>https://orcid.org/0000-0002-1096-2436</orcidid><orcidid>https://orcid.org/0000-0002-8310-3261</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-9326 |
ispartof | Environmental research letters, 2024-07, Vol.19 (7), p.74003 |
issn | 1748-9326 1748-9326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1748_9326_ad50ed |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Arctic tundra Atmosphere Biogeochemistry Biosphere Carbon Carbon dioxide Carbon dioxide emissions Climate system Drainage Ecological monitoring Ecosystems Fluxes Global climate Greenhouse effect Greenhouse gases Melting Organic carbon Organic soils parameter sensitivity Permafrost permafrost-thaw Physical properties Soil physical properties Soil properties Soils Taiga & tundra terrestrial biosphere mode Thawing Tundra Vegetation |
title | Exploring the interplay between soil thermal and hydrological changes and their impact on carbon fluxes in permafrost ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20interplay%20between%20soil%20thermal%20and%20hydrological%20changes%20and%20their%20impact%20on%20carbon%20fluxes%20in%20permafrost%20ecosystems&rft.jtitle=Environmental%20research%20letters&rft.au=Briones,%20Valeria&rft.date=2024-07-01&rft.volume=19&rft.issue=7&rft.spage=74003&rft.pages=74003-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad50ed&rft_dat=%3Cproquest_cross%3E3066900632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066900632&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_daf5467da4a54fc7be26f39582f9a47b&rfr_iscdi=true |