Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites
Permafrost stability is significantly influenced by the thermal buffering effects of snow and active-layer peat soils. In the warm season, peat soils act as a barrier to downward heat transfer mainly due to their low thermal conductivity. In the cold season, the snowpack serves as a thermal insulato...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2024-05, Vol.19 (5), p.54027 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 54027 |
container_title | Environmental research letters |
container_volume | 19 |
creator | Tao, Jing Riley, William J Zhu, Qing |
description | Permafrost stability is significantly influenced by the thermal buffering effects of snow and active-layer peat soils. In the warm season, peat soils act as a barrier to downward heat transfer mainly due to their low thermal conductivity. In the cold season, the snowpack serves as a thermal insulator, retarding the release of heat from the soil to the atmosphere. Currently, many global land models overestimate permafrost soil temperature and active layer thickness (ALT), partially due to inaccurate representations of soil organic matter (SOM) density profiles and snow thermal insulation. In this study, we evaluated the impacts of SOM and snow schemes on ALT simulations at pan-Arctic permafrost sites using the Energy Exascale Earth System Model (E3SM) land model (ELM). We conducted simulations at the Circumpolar Active Layer Monitoring (CALM) sites across the pan-Arctic domain. We improved ELM-simulated site-level ALT using a knowledge-based hierarchical optimization procedure and examined the effects of precipitation-phase partitioning methods (PPMs), snow compaction schemes, and snow thermal conductivity schemes on simulated snow depth, soil temperature, ALT, and CO
2
fluxes. Results showed that the optimized ELM significantly improved agreement with observed ALT (e.g. RMSE decreased from 0.83 m to 0.15 m). Our sensitivity analysis revealed that snow-related schemes significantly impact simulated snow thermal insulation levels, soil temperature, and ALT. For example, one of the commonly used snow thermal conductivity schemes (quadratic Sturm or SturmQua) generally produced warmer soil temperatures and larger ALT compared to the other two tested schemes. The SturmQua scheme also amplified the model’s sensitivity to PPMs and predicted deeper ALTs than the other two snow schemes under both current and future climates. The study highlights the importance of accurately representing snow-related processes and peat soils in land models to enhance permafrost dynamics simulations. |
doi_str_mv | 10.1088/1748-9326/ad38ce |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_9326_ad38ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d75681d45535415bb2b9d77eecacd0ed</doaj_id><sourcerecordid>3045480470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e74ad684586fe32d5432a768ee75430fb000794e69affea4c13692625db84b6e3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEqVw52jBgQuhjr9zrKpCK1XiAmdrYk-6XpI42N5W_fd4CWo5IE4e2c88mvHbNG87-qmjxpx1Wpi250ydgefG4bPm5PHq-V_1y-ZVzntKpZDanDT3l3cwHaCE5ZaUHZIwr-AKiSNZEQrJMUyZwOJJXuI9yW6HM2YSF5LDfJigoCeVD3dIJnjAVB3B_Vgw16ZCVlja81SfXbWlGcYUc3WGgvl182KEKeObP-dp8_3z5beLq_bm65fri_Ob1glmSotagFdGSKNG5MxLwRloZRB1Lek4UEp1L1D1MI4IwnVc9Uwx6QcjBoX8tLnevD7C3q4pzJAebIRgf1_EdGsh1QEntF5LZTovpORSdHIY2NB7rREdOE_RV9e7zVW3CDa7uofbubgs6IplnPVSqgq936A1xZ8HzMXu4yEtdUfLqZDCUKFppehGufolOeH4OFpH7TFPewzMHgOzW5615ePWEuL65PwP_uEfOKbJdr2VtuZPmbarH_kvvdSvlw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045480470</pqid></control><display><type>article</type><title>Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Tao, Jing ; Riley, William J ; Zhu, Qing</creator><creatorcontrib>Tao, Jing ; Riley, William J ; Zhu, Qing</creatorcontrib><description>Permafrost stability is significantly influenced by the thermal buffering effects of snow and active-layer peat soils. In the warm season, peat soils act as a barrier to downward heat transfer mainly due to their low thermal conductivity. In the cold season, the snowpack serves as a thermal insulator, retarding the release of heat from the soil to the atmosphere. Currently, many global land models overestimate permafrost soil temperature and active layer thickness (ALT), partially due to inaccurate representations of soil organic matter (SOM) density profiles and snow thermal insulation. In this study, we evaluated the impacts of SOM and snow schemes on ALT simulations at pan-Arctic permafrost sites using the Energy Exascale Earth System Model (E3SM) land model (ELM). We conducted simulations at the Circumpolar Active Layer Monitoring (CALM) sites across the pan-Arctic domain. We improved ELM-simulated site-level ALT using a knowledge-based hierarchical optimization procedure and examined the effects of precipitation-phase partitioning methods (PPMs), snow compaction schemes, and snow thermal conductivity schemes on simulated snow depth, soil temperature, ALT, and CO
2
fluxes. Results showed that the optimized ELM significantly improved agreement with observed ALT (e.g. RMSE decreased from 0.83 m to 0.15 m). Our sensitivity analysis revealed that snow-related schemes significantly impact simulated snow thermal insulation levels, soil temperature, and ALT. For example, one of the commonly used snow thermal conductivity schemes (quadratic Sturm or SturmQua) generally produced warmer soil temperatures and larger ALT compared to the other two tested schemes. The SturmQua scheme also amplified the model’s sensitivity to PPMs and predicted deeper ALTs than the other two snow schemes under both current and future climates. The study highlights the importance of accurately representing snow-related processes and peat soils in land models to enhance permafrost dynamics simulations.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad38ce</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>active layer thickness ; Atmospheric models ; Carbon dioxide ; Cold season ; E3SM land model ; Heat conductivity ; Heat transfer ; Organic matter ; Organic soils ; Peat ; Peat soils ; Permafrost ; Sensitivity analysis ; Simulation ; Snow ; Snow depth ; snow thermal conductivity ; Snowpack ; Soil compaction ; Soil layers ; Soil organic matter ; Soil temperature ; Temperature ; Thermal conductivity ; Thermal insulation ; Thermal simulation ; Thickness</subject><ispartof>Environmental research letters, 2024-05, Vol.19 (5), p.54027</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c428t-e74ad684586fe32d5432a768ee75430fb000794e69affea4c13692625db84b6e3</cites><orcidid>0000-0002-4615-2304 ; 0000-0003-2441-944X ; 0000-0002-4009-2910 ; 0000000246152304 ; 0000000240092910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/ad38ce/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,38845,38867,53815,53842</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2329556$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Jing</creatorcontrib><creatorcontrib>Riley, William J</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><title>Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Permafrost stability is significantly influenced by the thermal buffering effects of snow and active-layer peat soils. In the warm season, peat soils act as a barrier to downward heat transfer mainly due to their low thermal conductivity. In the cold season, the snowpack serves as a thermal insulator, retarding the release of heat from the soil to the atmosphere. Currently, many global land models overestimate permafrost soil temperature and active layer thickness (ALT), partially due to inaccurate representations of soil organic matter (SOM) density profiles and snow thermal insulation. In this study, we evaluated the impacts of SOM and snow schemes on ALT simulations at pan-Arctic permafrost sites using the Energy Exascale Earth System Model (E3SM) land model (ELM). We conducted simulations at the Circumpolar Active Layer Monitoring (CALM) sites across the pan-Arctic domain. We improved ELM-simulated site-level ALT using a knowledge-based hierarchical optimization procedure and examined the effects of precipitation-phase partitioning methods (PPMs), snow compaction schemes, and snow thermal conductivity schemes on simulated snow depth, soil temperature, ALT, and CO
2
fluxes. Results showed that the optimized ELM significantly improved agreement with observed ALT (e.g. RMSE decreased from 0.83 m to 0.15 m). Our sensitivity analysis revealed that snow-related schemes significantly impact simulated snow thermal insulation levels, soil temperature, and ALT. For example, one of the commonly used snow thermal conductivity schemes (quadratic Sturm or SturmQua) generally produced warmer soil temperatures and larger ALT compared to the other two tested schemes. The SturmQua scheme also amplified the model’s sensitivity to PPMs and predicted deeper ALTs than the other two snow schemes under both current and future climates. The study highlights the importance of accurately representing snow-related processes and peat soils in land models to enhance permafrost dynamics simulations.</description><subject>active layer thickness</subject><subject>Atmospheric models</subject><subject>Carbon dioxide</subject><subject>Cold season</subject><subject>E3SM land model</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Peat</subject><subject>Peat soils</subject><subject>Permafrost</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Snow</subject><subject>Snow depth</subject><subject>snow thermal conductivity</subject><subject>Snowpack</subject><subject>Soil compaction</subject><subject>Soil layers</subject><subject>Soil organic matter</subject><subject>Soil temperature</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal insulation</subject><subject>Thermal simulation</subject><subject>Thickness</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEEqVw52jBgQuhjr9zrKpCK1XiAmdrYk-6XpI42N5W_fd4CWo5IE4e2c88mvHbNG87-qmjxpx1Wpi250ydgefG4bPm5PHq-V_1y-ZVzntKpZDanDT3l3cwHaCE5ZaUHZIwr-AKiSNZEQrJMUyZwOJJXuI9yW6HM2YSF5LDfJigoCeVD3dIJnjAVB3B_Vgw16ZCVlja81SfXbWlGcYUc3WGgvl182KEKeObP-dp8_3z5beLq_bm65fri_Ob1glmSotagFdGSKNG5MxLwRloZRB1Lek4UEp1L1D1MI4IwnVc9Uwx6QcjBoX8tLnevD7C3q4pzJAebIRgf1_EdGsh1QEntF5LZTovpORSdHIY2NB7rREdOE_RV9e7zVW3CDa7uofbubgs6IplnPVSqgq936A1xZ8HzMXu4yEtdUfLqZDCUKFppehGufolOeH4OFpH7TFPewzMHgOzW5615ePWEuL65PwP_uEfOKbJdr2VtuZPmbarH_kvvdSvlw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Tao, Jing</creator><creator>Riley, William J</creator><creator>Zhu, Qing</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4615-2304</orcidid><orcidid>https://orcid.org/0000-0003-2441-944X</orcidid><orcidid>https://orcid.org/0000-0002-4009-2910</orcidid><orcidid>https://orcid.org/0000000246152304</orcidid><orcidid>https://orcid.org/0000000240092910</orcidid></search><sort><creationdate>20240501</creationdate><title>Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites</title><author>Tao, Jing ; Riley, William J ; Zhu, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e74ad684586fe32d5432a768ee75430fb000794e69affea4c13692625db84b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active layer thickness</topic><topic>Atmospheric models</topic><topic>Carbon dioxide</topic><topic>Cold season</topic><topic>E3SM land model</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Peat</topic><topic>Peat soils</topic><topic>Permafrost</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Snow</topic><topic>Snow depth</topic><topic>snow thermal conductivity</topic><topic>Snowpack</topic><topic>Soil compaction</topic><topic>Soil layers</topic><topic>Soil organic matter</topic><topic>Soil temperature</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal insulation</topic><topic>Thermal simulation</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Jing</creatorcontrib><creatorcontrib>Riley, William J</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Jing</au><au>Riley, William J</au><au>Zhu, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>19</volume><issue>5</issue><spage>54027</spage><pages>54027-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Permafrost stability is significantly influenced by the thermal buffering effects of snow and active-layer peat soils. In the warm season, peat soils act as a barrier to downward heat transfer mainly due to their low thermal conductivity. In the cold season, the snowpack serves as a thermal insulator, retarding the release of heat from the soil to the atmosphere. Currently, many global land models overestimate permafrost soil temperature and active layer thickness (ALT), partially due to inaccurate representations of soil organic matter (SOM) density profiles and snow thermal insulation. In this study, we evaluated the impacts of SOM and snow schemes on ALT simulations at pan-Arctic permafrost sites using the Energy Exascale Earth System Model (E3SM) land model (ELM). We conducted simulations at the Circumpolar Active Layer Monitoring (CALM) sites across the pan-Arctic domain. We improved ELM-simulated site-level ALT using a knowledge-based hierarchical optimization procedure and examined the effects of precipitation-phase partitioning methods (PPMs), snow compaction schemes, and snow thermal conductivity schemes on simulated snow depth, soil temperature, ALT, and CO
2
fluxes. Results showed that the optimized ELM significantly improved agreement with observed ALT (e.g. RMSE decreased from 0.83 m to 0.15 m). Our sensitivity analysis revealed that snow-related schemes significantly impact simulated snow thermal insulation levels, soil temperature, and ALT. For example, one of the commonly used snow thermal conductivity schemes (quadratic Sturm or SturmQua) generally produced warmer soil temperatures and larger ALT compared to the other two tested schemes. The SturmQua scheme also amplified the model’s sensitivity to PPMs and predicted deeper ALTs than the other two snow schemes under both current and future climates. The study highlights the importance of accurately representing snow-related processes and peat soils in land models to enhance permafrost dynamics simulations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad38ce</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4615-2304</orcidid><orcidid>https://orcid.org/0000-0003-2441-944X</orcidid><orcidid>https://orcid.org/0000-0002-4009-2910</orcidid><orcidid>https://orcid.org/0000000246152304</orcidid><orcidid>https://orcid.org/0000000240092910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-9326 |
ispartof | Environmental research letters, 2024-05, Vol.19 (5), p.54027 |
issn | 1748-9326 1748-9326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1748_9326_ad38ce |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | active layer thickness Atmospheric models Carbon dioxide Cold season E3SM land model Heat conductivity Heat transfer Organic matter Organic soils Peat Peat soils Permafrost Sensitivity analysis Simulation Snow Snow depth snow thermal conductivity Snowpack Soil compaction Soil layers Soil organic matter Soil temperature Temperature Thermal conductivity Thermal insulation Thermal simulation Thickness |
title | Evaluating the impact of peat soils and snow schemes on simulated active layer thickness at pan-Arctic permafrost sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20impact%20of%20peat%20soils%20and%20snow%20schemes%20on%20simulated%20active%20layer%20thickness%20at%20pan-Arctic%20permafrost%20sites&rft.jtitle=Environmental%20research%20letters&rft.au=Tao,%20Jing&rft.date=2024-05-01&rft.volume=19&rft.issue=5&rft.spage=54027&rft.pages=54027-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad38ce&rft_dat=%3Cproquest_cross%3E3045480470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3045480470&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d75681d45535415bb2b9d77eecacd0ed&rfr_iscdi=true |