Local-scale heterogeneity of soil thermal dynamics and controlling factors in a discontinuous permafrost region
In permafrost regions, the strong spatial and temporal variability in soil temperature cannot be explained by the weather forcing only. Understanding the local heterogeneity of soil thermal dynamics and their controls is essential to understand how permafrost systems respond to climate change and to...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2024-03, Vol.19 (3), p.34030 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 34030 |
container_title | Environmental research letters |
container_volume | 19 |
creator | Wang, Chen Shirley, Ian Wielandt, Stijn Lamb, John Uhlemann, Sebastian Breen, Amy Busey, Robert C Bolton, W Robert Hubbard, Susan Dafflon, Baptiste |
description | In permafrost regions, the strong spatial and temporal variability in soil temperature cannot be explained by the weather forcing only. Understanding the local heterogeneity of soil thermal dynamics and their controls is essential to understand how permafrost systems respond to climate change and to develop process-based models or remote sensing products for predicting soil temperature. In this study, we analyzed soil temperature dynamics and their controls in a discontinuous permafrost region on the Seward Peninsula, Alaska. We acquired one-year temperature time series at multiple depths (at 5 or 10 cm intervals up to 85 cm depth) at 45 discrete locations across a 2.3 km
2
watershed. We observed a larger spatial variability in winter temperatures than that in summer temperatures at all depths, with the former controlling most of the spatial variability in mean annual temperatures. We also observed a strong correlation between mean annual ground temperature at a depth of 85 cm and mean annual or winter season ground surface temperature across the 45 locations. We demonstrate that soils classified as cold, intermediate, or warm using hierarchical clustering of full-year temperature data closely match their co-located vegetation (graminoid tundra, dwarf shrub tundra, and tall shrub tundra, respectively). We show that the spatial heterogeneity in soil temperature is primarily driven by spatial heterogeneity in snow cover, which induces variable winter insulation and soil thermal diffusivity. These effects further extend to the subsequent summer by causing variable latent heat exchanges. Finally, we discuss the challenges of predicting soil temperatures from snow depth and vegetation height alone by considering the complexity observed in the field data and reproduced in a model sensitivity analysis. |
doi_str_mv | 10.1088/1748-9326/ad27bb |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_9326_ad27bb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3decea7f28e74d8da577344645d5cf4a</doaj_id><sourcerecordid>2932497559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-973ee1f1fd000884f68abf470b323bfb9aabfbc3b61288c7926aabd2dce950eb3</originalsourceid><addsrcrecordid>eNp1UTuP1DAYjBBIHAc9pQUFDeEcP2KnRKeDO2klGqgtPz7vepW1g-0t9t_jEHRcAY0f45mR55uuezvgTwOW8mYQTPYTJeONdkQY86y7eoSePzm_7F6VcsSYMy7kVZd2yeq5L20BdIAKOe0hQqgXlDwqKcyoHiCf9IzcJepTsAXp6JBNseY0zyHukde2plxQiEgjF8r6FuI5nQtaVqnPqVSUYR9SfN298Hou8ObPft39-HL3_fa-3337-nD7eddbRmTtJ0EBBj94h3FLx_wotfFMYEMJNd5Mul2NpWYciJRWTGRsiCPOwsQxGHrdPWy-LumjWnI46XxRSQf1G0h5r3Suwc6gqAMLWngiQTAnneZCUMZGxh23nunm9W7zajGCKjZUsIcWMoKtijAySi4b6f1GWnL6eYZS1TGdc2wZFWlzZ5PgfGosvLFsm0nJ4B-_NmC19qjWotRalNp6bJIPmySk5a8n5FkNk6IKU4YpVovzjfnxH8z_Gv8C5E2u5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932497559</pqid></control><display><type>article</type><title>Local-scale heterogeneity of soil thermal dynamics and controlling factors in a discontinuous permafrost region</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Chen ; Shirley, Ian ; Wielandt, Stijn ; Lamb, John ; Uhlemann, Sebastian ; Breen, Amy ; Busey, Robert C ; Bolton, W Robert ; Hubbard, Susan ; Dafflon, Baptiste</creator><creatorcontrib>Wang, Chen ; Shirley, Ian ; Wielandt, Stijn ; Lamb, John ; Uhlemann, Sebastian ; Breen, Amy ; Busey, Robert C ; Bolton, W Robert ; Hubbard, Susan ; Dafflon, Baptiste ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>In permafrost regions, the strong spatial and temporal variability in soil temperature cannot be explained by the weather forcing only. Understanding the local heterogeneity of soil thermal dynamics and their controls is essential to understand how permafrost systems respond to climate change and to develop process-based models or remote sensing products for predicting soil temperature. In this study, we analyzed soil temperature dynamics and their controls in a discontinuous permafrost region on the Seward Peninsula, Alaska. We acquired one-year temperature time series at multiple depths (at 5 or 10 cm intervals up to 85 cm depth) at 45 discrete locations across a 2.3 km
2
watershed. We observed a larger spatial variability in winter temperatures than that in summer temperatures at all depths, with the former controlling most of the spatial variability in mean annual temperatures. We also observed a strong correlation between mean annual ground temperature at a depth of 85 cm and mean annual or winter season ground surface temperature across the 45 locations. We demonstrate that soils classified as cold, intermediate, or warm using hierarchical clustering of full-year temperature data closely match their co-located vegetation (graminoid tundra, dwarf shrub tundra, and tall shrub tundra, respectively). We show that the spatial heterogeneity in soil temperature is primarily driven by spatial heterogeneity in snow cover, which induces variable winter insulation and soil thermal diffusivity. These effects further extend to the subsequent summer by causing variable latent heat exchanges. Finally, we discuss the challenges of predicting soil temperatures from snow depth and vegetation height alone by considering the complexity observed in the field data and reproduced in a model sensitivity analysis.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad27bb</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Climate change ; Cluster analysis ; Clustering ; ENVIRONMENTAL SCIENCES ; Heat exchange ; Heterogeneity ; Insulation ; Latent heat ; Permafrost ; Remote sensing ; Sensitivity analysis ; Snow ; Snow cover ; Snow depth ; Soil analysis ; Soil classification ; Soil temperature ; Spatial heterogeneity ; Summer ; Surface temperature ; Taiga & tundra ; Temperature ; Thermal diffusivity ; thermal dynamics ; Tundra ; Variability ; Vegetation ; Winter</subject><ispartof>Environmental research letters, 2024-03, Vol.19 (3), p.34030</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c428t-973ee1f1fd000884f68abf470b323bfb9aabfbc3b61288c7926aabd2dce950eb3</cites><orcidid>0000-0002-2672-2998 ; 0000-0002-1109-3906 ; 0000-0001-9871-5650 ; 0000-0002-7673-7346 ; 0000-0001-9508-7425 ; 0000-0002-2229-1414 ; 0000-0001-9538-1122 ; 0000-0003-2966-5631 ; 0000-0002-4282-242X ; 0000000198715650 ; 0000000195087425 ; 0000000329665631 ; 0000000211093906 ; 0000000195381122 ; 0000000226722998 ; 000000024282242X ; 0000000276737346 ; 0000000222291414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/ad27bb/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,38845,38867,53815,53842</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2426858$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Shirley, Ian</creatorcontrib><creatorcontrib>Wielandt, Stijn</creatorcontrib><creatorcontrib>Lamb, John</creatorcontrib><creatorcontrib>Uhlemann, Sebastian</creatorcontrib><creatorcontrib>Breen, Amy</creatorcontrib><creatorcontrib>Busey, Robert C</creatorcontrib><creatorcontrib>Bolton, W Robert</creatorcontrib><creatorcontrib>Hubbard, Susan</creatorcontrib><creatorcontrib>Dafflon, Baptiste</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Local-scale heterogeneity of soil thermal dynamics and controlling factors in a discontinuous permafrost region</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>In permafrost regions, the strong spatial and temporal variability in soil temperature cannot be explained by the weather forcing only. Understanding the local heterogeneity of soil thermal dynamics and their controls is essential to understand how permafrost systems respond to climate change and to develop process-based models or remote sensing products for predicting soil temperature. In this study, we analyzed soil temperature dynamics and their controls in a discontinuous permafrost region on the Seward Peninsula, Alaska. We acquired one-year temperature time series at multiple depths (at 5 or 10 cm intervals up to 85 cm depth) at 45 discrete locations across a 2.3 km
2
watershed. We observed a larger spatial variability in winter temperatures than that in summer temperatures at all depths, with the former controlling most of the spatial variability in mean annual temperatures. We also observed a strong correlation between mean annual ground temperature at a depth of 85 cm and mean annual or winter season ground surface temperature across the 45 locations. We demonstrate that soils classified as cold, intermediate, or warm using hierarchical clustering of full-year temperature data closely match their co-located vegetation (graminoid tundra, dwarf shrub tundra, and tall shrub tundra, respectively). We show that the spatial heterogeneity in soil temperature is primarily driven by spatial heterogeneity in snow cover, which induces variable winter insulation and soil thermal diffusivity. These effects further extend to the subsequent summer by causing variable latent heat exchanges. Finally, we discuss the challenges of predicting soil temperatures from snow depth and vegetation height alone by considering the complexity observed in the field data and reproduced in a model sensitivity analysis.</description><subject>Climate change</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Heat exchange</subject><subject>Heterogeneity</subject><subject>Insulation</subject><subject>Latent heat</subject><subject>Permafrost</subject><subject>Remote sensing</subject><subject>Sensitivity analysis</subject><subject>Snow</subject><subject>Snow cover</subject><subject>Snow depth</subject><subject>Soil analysis</subject><subject>Soil classification</subject><subject>Soil temperature</subject><subject>Spatial heterogeneity</subject><subject>Summer</subject><subject>Surface temperature</subject><subject>Taiga & tundra</subject><subject>Temperature</subject><subject>Thermal diffusivity</subject><subject>thermal dynamics</subject><subject>Tundra</subject><subject>Variability</subject><subject>Vegetation</subject><subject>Winter</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1UTuP1DAYjBBIHAc9pQUFDeEcP2KnRKeDO2klGqgtPz7vepW1g-0t9t_jEHRcAY0f45mR55uuezvgTwOW8mYQTPYTJeONdkQY86y7eoSePzm_7F6VcsSYMy7kVZd2yeq5L20BdIAKOe0hQqgXlDwqKcyoHiCf9IzcJepTsAXp6JBNseY0zyHukde2plxQiEgjF8r6FuI5nQtaVqnPqVSUYR9SfN298Hou8ObPft39-HL3_fa-3337-nD7eddbRmTtJ0EBBj94h3FLx_wotfFMYEMJNd5Mul2NpWYciJRWTGRsiCPOwsQxGHrdPWy-LumjWnI46XxRSQf1G0h5r3Suwc6gqAMLWngiQTAnneZCUMZGxh23nunm9W7zajGCKjZUsIcWMoKtijAySi4b6f1GWnL6eYZS1TGdc2wZFWlzZ5PgfGosvLFsm0nJ4B-_NmC19qjWotRalNp6bJIPmySk5a8n5FkNk6IKU4YpVovzjfnxH8z_Gv8C5E2u5Q</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Chen</creator><creator>Shirley, Ian</creator><creator>Wielandt, Stijn</creator><creator>Lamb, John</creator><creator>Uhlemann, Sebastian</creator><creator>Breen, Amy</creator><creator>Busey, Robert C</creator><creator>Bolton, W Robert</creator><creator>Hubbard, Susan</creator><creator>Dafflon, Baptiste</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2672-2998</orcidid><orcidid>https://orcid.org/0000-0002-1109-3906</orcidid><orcidid>https://orcid.org/0000-0001-9871-5650</orcidid><orcidid>https://orcid.org/0000-0002-7673-7346</orcidid><orcidid>https://orcid.org/0000-0001-9508-7425</orcidid><orcidid>https://orcid.org/0000-0002-2229-1414</orcidid><orcidid>https://orcid.org/0000-0001-9538-1122</orcidid><orcidid>https://orcid.org/0000-0003-2966-5631</orcidid><orcidid>https://orcid.org/0000-0002-4282-242X</orcidid><orcidid>https://orcid.org/0000000198715650</orcidid><orcidid>https://orcid.org/0000000195087425</orcidid><orcidid>https://orcid.org/0000000329665631</orcidid><orcidid>https://orcid.org/0000000211093906</orcidid><orcidid>https://orcid.org/0000000195381122</orcidid><orcidid>https://orcid.org/0000000226722998</orcidid><orcidid>https://orcid.org/000000024282242X</orcidid><orcidid>https://orcid.org/0000000276737346</orcidid><orcidid>https://orcid.org/0000000222291414</orcidid></search><sort><creationdate>20240301</creationdate><title>Local-scale heterogeneity of soil thermal dynamics and controlling factors in a discontinuous permafrost region</title><author>Wang, Chen ; Shirley, Ian ; Wielandt, Stijn ; Lamb, John ; Uhlemann, Sebastian ; Breen, Amy ; Busey, Robert C ; Bolton, W Robert ; Hubbard, Susan ; Dafflon, Baptiste</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-973ee1f1fd000884f68abf470b323bfb9aabfbc3b61288c7926aabd2dce950eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Climate change</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Heat exchange</topic><topic>Heterogeneity</topic><topic>Insulation</topic><topic>Latent heat</topic><topic>Permafrost</topic><topic>Remote sensing</topic><topic>Sensitivity analysis</topic><topic>Snow</topic><topic>Snow cover</topic><topic>Snow depth</topic><topic>Soil analysis</topic><topic>Soil classification</topic><topic>Soil temperature</topic><topic>Spatial heterogeneity</topic><topic>Summer</topic><topic>Surface temperature</topic><topic>Taiga & tundra</topic><topic>Temperature</topic><topic>Thermal diffusivity</topic><topic>thermal dynamics</topic><topic>Tundra</topic><topic>Variability</topic><topic>Vegetation</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Shirley, Ian</creatorcontrib><creatorcontrib>Wielandt, Stijn</creatorcontrib><creatorcontrib>Lamb, John</creatorcontrib><creatorcontrib>Uhlemann, Sebastian</creatorcontrib><creatorcontrib>Breen, Amy</creatorcontrib><creatorcontrib>Busey, Robert C</creatorcontrib><creatorcontrib>Bolton, W Robert</creatorcontrib><creatorcontrib>Hubbard, Susan</creatorcontrib><creatorcontrib>Dafflon, Baptiste</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chen</au><au>Shirley, Ian</au><au>Wielandt, Stijn</au><au>Lamb, John</au><au>Uhlemann, Sebastian</au><au>Breen, Amy</au><au>Busey, Robert C</au><au>Bolton, W Robert</au><au>Hubbard, Susan</au><au>Dafflon, Baptiste</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local-scale heterogeneity of soil thermal dynamics and controlling factors in a discontinuous permafrost region</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>19</volume><issue>3</issue><spage>34030</spage><pages>34030-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>In permafrost regions, the strong spatial and temporal variability in soil temperature cannot be explained by the weather forcing only. Understanding the local heterogeneity of soil thermal dynamics and their controls is essential to understand how permafrost systems respond to climate change and to develop process-based models or remote sensing products for predicting soil temperature. In this study, we analyzed soil temperature dynamics and their controls in a discontinuous permafrost region on the Seward Peninsula, Alaska. We acquired one-year temperature time series at multiple depths (at 5 or 10 cm intervals up to 85 cm depth) at 45 discrete locations across a 2.3 km
2
watershed. We observed a larger spatial variability in winter temperatures than that in summer temperatures at all depths, with the former controlling most of the spatial variability in mean annual temperatures. We also observed a strong correlation between mean annual ground temperature at a depth of 85 cm and mean annual or winter season ground surface temperature across the 45 locations. We demonstrate that soils classified as cold, intermediate, or warm using hierarchical clustering of full-year temperature data closely match their co-located vegetation (graminoid tundra, dwarf shrub tundra, and tall shrub tundra, respectively). We show that the spatial heterogeneity in soil temperature is primarily driven by spatial heterogeneity in snow cover, which induces variable winter insulation and soil thermal diffusivity. These effects further extend to the subsequent summer by causing variable latent heat exchanges. Finally, we discuss the challenges of predicting soil temperatures from snow depth and vegetation height alone by considering the complexity observed in the field data and reproduced in a model sensitivity analysis.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad27bb</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2672-2998</orcidid><orcidid>https://orcid.org/0000-0002-1109-3906</orcidid><orcidid>https://orcid.org/0000-0001-9871-5650</orcidid><orcidid>https://orcid.org/0000-0002-7673-7346</orcidid><orcidid>https://orcid.org/0000-0001-9508-7425</orcidid><orcidid>https://orcid.org/0000-0002-2229-1414</orcidid><orcidid>https://orcid.org/0000-0001-9538-1122</orcidid><orcidid>https://orcid.org/0000-0003-2966-5631</orcidid><orcidid>https://orcid.org/0000-0002-4282-242X</orcidid><orcidid>https://orcid.org/0000000198715650</orcidid><orcidid>https://orcid.org/0000000195087425</orcidid><orcidid>https://orcid.org/0000000329665631</orcidid><orcidid>https://orcid.org/0000000211093906</orcidid><orcidid>https://orcid.org/0000000195381122</orcidid><orcidid>https://orcid.org/0000000226722998</orcidid><orcidid>https://orcid.org/000000024282242X</orcidid><orcidid>https://orcid.org/0000000276737346</orcidid><orcidid>https://orcid.org/0000000222291414</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-9326 |
ispartof | Environmental research letters, 2024-03, Vol.19 (3), p.34030 |
issn | 1748-9326 1748-9326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1748_9326_ad27bb |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Climate change Cluster analysis Clustering ENVIRONMENTAL SCIENCES Heat exchange Heterogeneity Insulation Latent heat Permafrost Remote sensing Sensitivity analysis Snow Snow cover Snow depth Soil analysis Soil classification Soil temperature Spatial heterogeneity Summer Surface temperature Taiga & tundra Temperature Thermal diffusivity thermal dynamics Tundra Variability Vegetation Winter |
title | Local-scale heterogeneity of soil thermal dynamics and controlling factors in a discontinuous permafrost region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local-scale%20heterogeneity%20of%20soil%20thermal%20dynamics%20and%20controlling%20factors%20in%20a%20discontinuous%20permafrost%20region&rft.jtitle=Environmental%20research%20letters&rft.au=Wang,%20Chen&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2024-03-01&rft.volume=19&rft.issue=3&rft.spage=34030&rft.pages=34030-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad27bb&rft_dat=%3Cproquest_cross%3E2932497559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932497559&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3decea7f28e74d8da577344645d5cf4a&rfr_iscdi=true |