Assessing the effective settling of mineral particles in the ocean with application to ocean-based carbon-dioxide removal
Ocean alkalinity enhancement (OAE), a potential approach for atmospheric carbon dioxide removal (CDR), can involve introducing milled mineral particles into the ocean to promote carbon dioxide uptake. The effectiveness of this method relies on particles remaining in the ocean mixed layer while disso...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2024-02, Vol.19 (2), p.24035 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 24035 |
container_title | Environmental research letters |
container_volume | 19 |
creator | Yang, Adam J K Timmermans, Mary-Louise |
description | Ocean alkalinity enhancement (OAE), a potential approach for atmospheric carbon dioxide removal (CDR), can involve introducing milled mineral particles into the ocean to promote carbon dioxide uptake. The effectiveness of this method relies on particles remaining in the ocean mixed layer while dissolution takes place, which depends on particle settling rates. Conventionally, particle settling rates are assessed using the Stokes settling velocity in stagnant conditions. However, recent numerical modeling reveals that in dynamic, stratified ocean environments, sediment vertical transport can be up to an order of magnitude faster than Stokes settling because of two types of fluid instabilities that can take place at the mixed layer base. Here, we estimate effective settling velocities in the presence of these instabilities and assess the implications for the efficacy of this particular OAE approach for CDR. The new effective settling rate estimates are sufficiently rapid that there is negligible particle dissolution before particles settle out of the mixed layer. This result is independent of initial particle size for the range of sizes considered here. Findings underscore the importance of considering ocean dynamics and stratification in assessing particle settling rates and provide valuable insights for optimizing OAE applications in diverse marine settings. |
doi_str_mv | 10.1088/1748-9326/ad2236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_9326_ad2236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8c50df4959554fbab476c7299bc4d1b3</doaj_id><sourcerecordid>2921532540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-f3113032ded9f40b51430d13589b49c806131bffbc10d1c8a67b803277ad57df3</originalsourceid><addsrcrecordid>eNp9kTtPHTEQhVcRkQIkfUpLKWjY4OeuXSIECRJSmqS2_BiDr_auF9sQ-Pf4soikQFS2znxzZkan674S_J1gKU_IyGWvGB1OjKeUDR-6_Vdp77__p-6glA3GgotR7nePp6VAKXG-RvUGEIQArsZ7QAVqnXZyCmgbZ8hmQovJNboJCorzM54cmBn9jfUGmWWZojM1plZKa6W3poBHzmSb5t7H9BA9oAzbdG-mz93HYKYCX17ew-7Pxfnvs5_91a8fl2enV73jmNQ-MEIYZtSDV4FjKwhn2BMmpLJcOYkHwogNwTrSZCfNMFrZ-HE0Xow-sMPucvX1yWz0kuPW5EedTNTPQsrX-uUsLZ3APnAllBA8WGP5OLiRKmUd98Sy5vVt9Vpyur2DUvUm3eW5ra-pokQwKjhuFF4pl1MpGcLrVIL1Liy9S0Pv0tBrWK3leG2Jafnn-Q5-9AYOedJEaaoxbVsIvbTrnwBCwqMQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921532540</pqid></control><display><type>article</type><title>Assessing the effective settling of mineral particles in the ocean with application to ocean-based carbon-dioxide removal</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Adam J K ; Timmermans, Mary-Louise</creator><creatorcontrib>Yang, Adam J K ; Timmermans, Mary-Louise</creatorcontrib><description>Ocean alkalinity enhancement (OAE), a potential approach for atmospheric carbon dioxide removal (CDR), can involve introducing milled mineral particles into the ocean to promote carbon dioxide uptake. The effectiveness of this method relies on particles remaining in the ocean mixed layer while dissolution takes place, which depends on particle settling rates. Conventionally, particle settling rates are assessed using the Stokes settling velocity in stagnant conditions. However, recent numerical modeling reveals that in dynamic, stratified ocean environments, sediment vertical transport can be up to an order of magnitude faster than Stokes settling because of two types of fluid instabilities that can take place at the mixed layer base. Here, we estimate effective settling velocities in the presence of these instabilities and assess the implications for the efficacy of this particular OAE approach for CDR. The new effective settling rate estimates are sufficiently rapid that there is negligible particle dissolution before particles settle out of the mixed layer. This result is independent of initial particle size for the range of sizes considered here. Findings underscore the importance of considering ocean dynamics and stratification in assessing particle settling rates and provide valuable insights for optimizing OAE applications in diverse marine settings.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad2236</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Alkalinity ; Carbon dioxide ; Carbon dioxide removal ; Dissolution ; fluid instabilities ; Marine environment ; Numerical models ; ocean alkalinity enhancement ; Ocean dynamics ; particle settling ; Settling velocity</subject><ispartof>Environmental research letters, 2024-02, Vol.19 (2), p.24035</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-f3113032ded9f40b51430d13589b49c806131bffbc10d1c8a67b803277ad57df3</cites><orcidid>0000-0003-2718-2556 ; 0000-0003-1401-2080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/ad2236/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Yang, Adam J K</creatorcontrib><creatorcontrib>Timmermans, Mary-Louise</creatorcontrib><title>Assessing the effective settling of mineral particles in the ocean with application to ocean-based carbon-dioxide removal</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Ocean alkalinity enhancement (OAE), a potential approach for atmospheric carbon dioxide removal (CDR), can involve introducing milled mineral particles into the ocean to promote carbon dioxide uptake. The effectiveness of this method relies on particles remaining in the ocean mixed layer while dissolution takes place, which depends on particle settling rates. Conventionally, particle settling rates are assessed using the Stokes settling velocity in stagnant conditions. However, recent numerical modeling reveals that in dynamic, stratified ocean environments, sediment vertical transport can be up to an order of magnitude faster than Stokes settling because of two types of fluid instabilities that can take place at the mixed layer base. Here, we estimate effective settling velocities in the presence of these instabilities and assess the implications for the efficacy of this particular OAE approach for CDR. The new effective settling rate estimates are sufficiently rapid that there is negligible particle dissolution before particles settle out of the mixed layer. This result is independent of initial particle size for the range of sizes considered here. Findings underscore the importance of considering ocean dynamics and stratification in assessing particle settling rates and provide valuable insights for optimizing OAE applications in diverse marine settings.</description><subject>Alkalinity</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide removal</subject><subject>Dissolution</subject><subject>fluid instabilities</subject><subject>Marine environment</subject><subject>Numerical models</subject><subject>ocean alkalinity enhancement</subject><subject>Ocean dynamics</subject><subject>particle settling</subject><subject>Settling velocity</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTtPHTEQhVcRkQIkfUpLKWjY4OeuXSIECRJSmqS2_BiDr_auF9sQ-Pf4soikQFS2znxzZkan674S_J1gKU_IyGWvGB1OjKeUDR-6_Vdp77__p-6glA3GgotR7nePp6VAKXG-RvUGEIQArsZ7QAVqnXZyCmgbZ8hmQovJNboJCorzM54cmBn9jfUGmWWZojM1plZKa6W3poBHzmSb5t7H9BA9oAzbdG-mz93HYKYCX17ew-7Pxfnvs5_91a8fl2enV73jmNQ-MEIYZtSDV4FjKwhn2BMmpLJcOYkHwogNwTrSZCfNMFrZ-HE0Xow-sMPucvX1yWz0kuPW5EedTNTPQsrX-uUsLZ3APnAllBA8WGP5OLiRKmUd98Sy5vVt9Vpyur2DUvUm3eW5ra-pokQwKjhuFF4pl1MpGcLrVIL1Liy9S0Pv0tBrWK3leG2Jafnn-Q5-9AYOedJEaaoxbVsIvbTrnwBCwqMQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yang, Adam J K</creator><creator>Timmermans, Mary-Louise</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2718-2556</orcidid><orcidid>https://orcid.org/0000-0003-1401-2080</orcidid></search><sort><creationdate>20240201</creationdate><title>Assessing the effective settling of mineral particles in the ocean with application to ocean-based carbon-dioxide removal</title><author>Yang, Adam J K ; Timmermans, Mary-Louise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-f3113032ded9f40b51430d13589b49c806131bffbc10d1c8a67b803277ad57df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkalinity</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide removal</topic><topic>Dissolution</topic><topic>fluid instabilities</topic><topic>Marine environment</topic><topic>Numerical models</topic><topic>ocean alkalinity enhancement</topic><topic>Ocean dynamics</topic><topic>particle settling</topic><topic>Settling velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Adam J K</creatorcontrib><creatorcontrib>Timmermans, Mary-Louise</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Adam J K</au><au>Timmermans, Mary-Louise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the effective settling of mineral particles in the ocean with application to ocean-based carbon-dioxide removal</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>24035</spage><pages>24035-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Ocean alkalinity enhancement (OAE), a potential approach for atmospheric carbon dioxide removal (CDR), can involve introducing milled mineral particles into the ocean to promote carbon dioxide uptake. The effectiveness of this method relies on particles remaining in the ocean mixed layer while dissolution takes place, which depends on particle settling rates. Conventionally, particle settling rates are assessed using the Stokes settling velocity in stagnant conditions. However, recent numerical modeling reveals that in dynamic, stratified ocean environments, sediment vertical transport can be up to an order of magnitude faster than Stokes settling because of two types of fluid instabilities that can take place at the mixed layer base. Here, we estimate effective settling velocities in the presence of these instabilities and assess the implications for the efficacy of this particular OAE approach for CDR. The new effective settling rate estimates are sufficiently rapid that there is negligible particle dissolution before particles settle out of the mixed layer. This result is independent of initial particle size for the range of sizes considered here. Findings underscore the importance of considering ocean dynamics and stratification in assessing particle settling rates and provide valuable insights for optimizing OAE applications in diverse marine settings.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad2236</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2718-2556</orcidid><orcidid>https://orcid.org/0000-0003-1401-2080</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-9326 |
ispartof | Environmental research letters, 2024-02, Vol.19 (2), p.24035 |
issn | 1748-9326 1748-9326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1748_9326_ad2236 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Alkalinity Carbon dioxide Carbon dioxide removal Dissolution fluid instabilities Marine environment Numerical models ocean alkalinity enhancement Ocean dynamics particle settling Settling velocity |
title | Assessing the effective settling of mineral particles in the ocean with application to ocean-based carbon-dioxide removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20effective%20settling%20of%20mineral%20particles%20in%20the%20ocean%20with%20application%20to%20ocean-based%20carbon-dioxide%20removal&rft.jtitle=Environmental%20research%20letters&rft.au=Yang,%20Adam%20J%20K&rft.date=2024-02-01&rft.volume=19&rft.issue=2&rft.spage=24035&rft.pages=24035-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad2236&rft_dat=%3Cproquest_cross%3E2921532540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921532540&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8c50df4959554fbab476c7299bc4d1b3&rfr_iscdi=true |