Dynamic global vegetation models underestimate net CO 2 flux mean and inter-annual variability in dryland ecosystems
Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010 Science 327 418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2021-09, Vol.16 (9), p.94023 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 94023 |
container_title | Environmental research letters |
container_volume | 16 |
creator | MacBean, Natasha Scott, Russell L Biederman, Joel A Peylin, Philippe Kolb, Thomas Litvak, Marcy E Krishnan, Praveena Meyers, Tilden P Arora, Vivek K Bastrikov, Vladislav Goll, Daniel Lombardozzi, Danica L Nabel, Julia E M S Pongratz, Julia Sitch, Stephen Walker, Anthony P Zaehle, Sönke Moore, David J P |
description | Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010
Science
327
418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global carbon (C) cycle (Poulter
et al
2014
Nature
509
600–3, Ahlstrom
et al
2015
Science
348
895–9, Zhang
et al
2018
Glob. Change Biol
.
24
3954–68). Projections of the global land C sink therefore rely on accurate representation of dryland C cycle processes; however, the dynamic global vegetation models (DGVMs) used in future projections have rarely been evaluated against dryland C flux data. Here, we carried out an evaluation of 14 DGVMs (TRENDY v7) against net ecosystem exchange (NEE) data from 12 dryland flux sites in the southwestern US encompassing a range of ecosystem types (forests, shrub- and grasslands). We find that all the models underestimate both mean annual C uptake/release as well as the magnitude of NEE IAV, suggesting that improvements in representing dryland regions may improve global C cycle projections. Across all models, the sensitivity and timing of ecosystem C uptake to plant available moisture was at fault. Spring biases in gross primary production (GPP) dominate the underestimate of mean annual NEE, whereas models’ lack of GPP response to water availability in both spring and summer monsoon are responsible for inability to capture NEE IAV. Errors in GPP moisture sensitivity at high elevation forested sites were more prominent during the spring, while errors at the low elevation shrub and grass-dominated sites were more important during the monsoon. We propose a range of hypotheses for why model GPP does not respond sufficiently to changing water availability that can serve as a guide for future dryland DGVM developments. Our analysis suggests that improvements in modeling C cycle processes across more than a quarter of the Earth’s land surface could be achieved by addressing the moisture sensitivity of dryland C uptake. |
doi_str_mv | 10.1088/1748-9326/ac1a38 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_9326_ac1a38</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1748_9326_ac1a38</sourcerecordid><originalsourceid>FETCH-LOGICAL-c888-cca075161b534bb6768688ce97042010cd30f6abc03070af26f7565787ead6f13</originalsourceid><addsrcrecordid>eNpNkM1qwzAQhEVpoWnae496ATcry5aUY0l_IZBL7mYtr4OKLBdJKfXbNyal9LTDzjAwH2P3Ah4EGLMSujLFWpZqhVagNBds8fe6_Kev2U1KHwB1VWuzYPlpCjg4yw9-bNHzLzpQxuzGwIexI5_4MXQUKWU3YCYeKPPNjpe898dvPhAGjqHjLmSKBYZwnDswOmydd3k6GbyLk58zZMc0pUxDumVXPfpEd793yfYvz_vNW7Hdvb5vHreFNcYU1iLoWijR1rJqW6WVUcZYWmuoShBgOwm9wtaCBA3Yl6rXtTqt0oSd6oVcMjjX2jimFKlvPuNpRZwaAc0MrZmpNDOV5gxN_gD7c2HY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic global vegetation models underestimate net CO 2 flux mean and inter-annual variability in dryland ecosystems</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>MacBean, Natasha ; Scott, Russell L ; Biederman, Joel A ; Peylin, Philippe ; Kolb, Thomas ; Litvak, Marcy E ; Krishnan, Praveena ; Meyers, Tilden P ; Arora, Vivek K ; Bastrikov, Vladislav ; Goll, Daniel ; Lombardozzi, Danica L ; Nabel, Julia E M S ; Pongratz, Julia ; Sitch, Stephen ; Walker, Anthony P ; Zaehle, Sönke ; Moore, David J P</creator><creatorcontrib>MacBean, Natasha ; Scott, Russell L ; Biederman, Joel A ; Peylin, Philippe ; Kolb, Thomas ; Litvak, Marcy E ; Krishnan, Praveena ; Meyers, Tilden P ; Arora, Vivek K ; Bastrikov, Vladislav ; Goll, Daniel ; Lombardozzi, Danica L ; Nabel, Julia E M S ; Pongratz, Julia ; Sitch, Stephen ; Walker, Anthony P ; Zaehle, Sönke ; Moore, David J P</creatorcontrib><description>Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010
Science
327
418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global carbon (C) cycle (Poulter
et al
2014
Nature
509
600–3, Ahlstrom
et al
2015
Science
348
895–9, Zhang
et al
2018
Glob. Change Biol
.
24
3954–68). Projections of the global land C sink therefore rely on accurate representation of dryland C cycle processes; however, the dynamic global vegetation models (DGVMs) used in future projections have rarely been evaluated against dryland C flux data. Here, we carried out an evaluation of 14 DGVMs (TRENDY v7) against net ecosystem exchange (NEE) data from 12 dryland flux sites in the southwestern US encompassing a range of ecosystem types (forests, shrub- and grasslands). We find that all the models underestimate both mean annual C uptake/release as well as the magnitude of NEE IAV, suggesting that improvements in representing dryland regions may improve global C cycle projections. Across all models, the sensitivity and timing of ecosystem C uptake to plant available moisture was at fault. Spring biases in gross primary production (GPP) dominate the underestimate of mean annual NEE, whereas models’ lack of GPP response to water availability in both spring and summer monsoon are responsible for inability to capture NEE IAV. Errors in GPP moisture sensitivity at high elevation forested sites were more prominent during the spring, while errors at the low elevation shrub and grass-dominated sites were more important during the monsoon. We propose a range of hypotheses for why model GPP does not respond sufficiently to changing water availability that can serve as a guide for future dryland DGVM developments. Our analysis suggests that improvements in modeling C cycle processes across more than a quarter of the Earth’s land surface could be achieved by addressing the moisture sensitivity of dryland C uptake.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ac1a38</identifier><language>eng</language><ispartof>Environmental research letters, 2021-09, Vol.16 (9), p.94023</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c888-cca075161b534bb6768688ce97042010cd30f6abc03070af26f7565787ead6f13</citedby><cites>FETCH-LOGICAL-c888-cca075161b534bb6768688ce97042010cd30f6abc03070af26f7565787ead6f13</cites><orcidid>0000-0001-6797-4836 ; 0000-0003-3557-7929 ; 0000-0002-3829-4265 ; 0000-0002-5760-3254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>MacBean, Natasha</creatorcontrib><creatorcontrib>Scott, Russell L</creatorcontrib><creatorcontrib>Biederman, Joel A</creatorcontrib><creatorcontrib>Peylin, Philippe</creatorcontrib><creatorcontrib>Kolb, Thomas</creatorcontrib><creatorcontrib>Litvak, Marcy E</creatorcontrib><creatorcontrib>Krishnan, Praveena</creatorcontrib><creatorcontrib>Meyers, Tilden P</creatorcontrib><creatorcontrib>Arora, Vivek K</creatorcontrib><creatorcontrib>Bastrikov, Vladislav</creatorcontrib><creatorcontrib>Goll, Daniel</creatorcontrib><creatorcontrib>Lombardozzi, Danica L</creatorcontrib><creatorcontrib>Nabel, Julia E M S</creatorcontrib><creatorcontrib>Pongratz, Julia</creatorcontrib><creatorcontrib>Sitch, Stephen</creatorcontrib><creatorcontrib>Walker, Anthony P</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Moore, David J P</creatorcontrib><title>Dynamic global vegetation models underestimate net CO 2 flux mean and inter-annual variability in dryland ecosystems</title><title>Environmental research letters</title><description>Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010
Science
327
418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global carbon (C) cycle (Poulter
et al
2014
Nature
509
600–3, Ahlstrom
et al
2015
Science
348
895–9, Zhang
et al
2018
Glob. Change Biol
.
24
3954–68). Projections of the global land C sink therefore rely on accurate representation of dryland C cycle processes; however, the dynamic global vegetation models (DGVMs) used in future projections have rarely been evaluated against dryland C flux data. Here, we carried out an evaluation of 14 DGVMs (TRENDY v7) against net ecosystem exchange (NEE) data from 12 dryland flux sites in the southwestern US encompassing a range of ecosystem types (forests, shrub- and grasslands). We find that all the models underestimate both mean annual C uptake/release as well as the magnitude of NEE IAV, suggesting that improvements in representing dryland regions may improve global C cycle projections. Across all models, the sensitivity and timing of ecosystem C uptake to plant available moisture was at fault. Spring biases in gross primary production (GPP) dominate the underestimate of mean annual NEE, whereas models’ lack of GPP response to water availability in both spring and summer monsoon are responsible for inability to capture NEE IAV. Errors in GPP moisture sensitivity at high elevation forested sites were more prominent during the spring, while errors at the low elevation shrub and grass-dominated sites were more important during the monsoon. We propose a range of hypotheses for why model GPP does not respond sufficiently to changing water availability that can serve as a guide for future dryland DGVM developments. Our analysis suggests that improvements in modeling C cycle processes across more than a quarter of the Earth’s land surface could be achieved by addressing the moisture sensitivity of dryland C uptake.</description><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkM1qwzAQhEVpoWnae496ATcry5aUY0l_IZBL7mYtr4OKLBdJKfXbNyal9LTDzjAwH2P3Ah4EGLMSujLFWpZqhVagNBds8fe6_Kev2U1KHwB1VWuzYPlpCjg4yw9-bNHzLzpQxuzGwIexI5_4MXQUKWU3YCYeKPPNjpe898dvPhAGjqHjLmSKBYZwnDswOmydd3k6GbyLk58zZMc0pUxDumVXPfpEd793yfYvz_vNW7Hdvb5vHreFNcYU1iLoWijR1rJqW6WVUcZYWmuoShBgOwm9wtaCBA3Yl6rXtTqt0oSd6oVcMjjX2jimFKlvPuNpRZwaAc0MrZmpNDOV5gxN_gD7c2HY</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>MacBean, Natasha</creator><creator>Scott, Russell L</creator><creator>Biederman, Joel A</creator><creator>Peylin, Philippe</creator><creator>Kolb, Thomas</creator><creator>Litvak, Marcy E</creator><creator>Krishnan, Praveena</creator><creator>Meyers, Tilden P</creator><creator>Arora, Vivek K</creator><creator>Bastrikov, Vladislav</creator><creator>Goll, Daniel</creator><creator>Lombardozzi, Danica L</creator><creator>Nabel, Julia E M S</creator><creator>Pongratz, Julia</creator><creator>Sitch, Stephen</creator><creator>Walker, Anthony P</creator><creator>Zaehle, Sönke</creator><creator>Moore, David J P</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6797-4836</orcidid><orcidid>https://orcid.org/0000-0003-3557-7929</orcidid><orcidid>https://orcid.org/0000-0002-3829-4265</orcidid><orcidid>https://orcid.org/0000-0002-5760-3254</orcidid></search><sort><creationdate>20210901</creationdate><title>Dynamic global vegetation models underestimate net CO 2 flux mean and inter-annual variability in dryland ecosystems</title><author>MacBean, Natasha ; Scott, Russell L ; Biederman, Joel A ; Peylin, Philippe ; Kolb, Thomas ; Litvak, Marcy E ; Krishnan, Praveena ; Meyers, Tilden P ; Arora, Vivek K ; Bastrikov, Vladislav ; Goll, Daniel ; Lombardozzi, Danica L ; Nabel, Julia E M S ; Pongratz, Julia ; Sitch, Stephen ; Walker, Anthony P ; Zaehle, Sönke ; Moore, David J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c888-cca075161b534bb6768688ce97042010cd30f6abc03070af26f7565787ead6f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacBean, Natasha</creatorcontrib><creatorcontrib>Scott, Russell L</creatorcontrib><creatorcontrib>Biederman, Joel A</creatorcontrib><creatorcontrib>Peylin, Philippe</creatorcontrib><creatorcontrib>Kolb, Thomas</creatorcontrib><creatorcontrib>Litvak, Marcy E</creatorcontrib><creatorcontrib>Krishnan, Praveena</creatorcontrib><creatorcontrib>Meyers, Tilden P</creatorcontrib><creatorcontrib>Arora, Vivek K</creatorcontrib><creatorcontrib>Bastrikov, Vladislav</creatorcontrib><creatorcontrib>Goll, Daniel</creatorcontrib><creatorcontrib>Lombardozzi, Danica L</creatorcontrib><creatorcontrib>Nabel, Julia E M S</creatorcontrib><creatorcontrib>Pongratz, Julia</creatorcontrib><creatorcontrib>Sitch, Stephen</creatorcontrib><creatorcontrib>Walker, Anthony P</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Moore, David J P</creatorcontrib><collection>CrossRef</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacBean, Natasha</au><au>Scott, Russell L</au><au>Biederman, Joel A</au><au>Peylin, Philippe</au><au>Kolb, Thomas</au><au>Litvak, Marcy E</au><au>Krishnan, Praveena</au><au>Meyers, Tilden P</au><au>Arora, Vivek K</au><au>Bastrikov, Vladislav</au><au>Goll, Daniel</au><au>Lombardozzi, Danica L</au><au>Nabel, Julia E M S</au><au>Pongratz, Julia</au><au>Sitch, Stephen</au><au>Walker, Anthony P</au><au>Zaehle, Sönke</au><au>Moore, David J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic global vegetation models underestimate net CO 2 flux mean and inter-annual variability in dryland ecosystems</atitle><jtitle>Environmental research letters</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>16</volume><issue>9</issue><spage>94023</spage><pages>94023-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><abstract>Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010
Science
327
418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global carbon (C) cycle (Poulter
et al
2014
Nature
509
600–3, Ahlstrom
et al
2015
Science
348
895–9, Zhang
et al
2018
Glob. Change Biol
.
24
3954–68). Projections of the global land C sink therefore rely on accurate representation of dryland C cycle processes; however, the dynamic global vegetation models (DGVMs) used in future projections have rarely been evaluated against dryland C flux data. Here, we carried out an evaluation of 14 DGVMs (TRENDY v7) against net ecosystem exchange (NEE) data from 12 dryland flux sites in the southwestern US encompassing a range of ecosystem types (forests, shrub- and grasslands). We find that all the models underestimate both mean annual C uptake/release as well as the magnitude of NEE IAV, suggesting that improvements in representing dryland regions may improve global C cycle projections. Across all models, the sensitivity and timing of ecosystem C uptake to plant available moisture was at fault. Spring biases in gross primary production (GPP) dominate the underestimate of mean annual NEE, whereas models’ lack of GPP response to water availability in both spring and summer monsoon are responsible for inability to capture NEE IAV. Errors in GPP moisture sensitivity at high elevation forested sites were more prominent during the spring, while errors at the low elevation shrub and grass-dominated sites were more important during the monsoon. We propose a range of hypotheses for why model GPP does not respond sufficiently to changing water availability that can serve as a guide for future dryland DGVM developments. Our analysis suggests that improvements in modeling C cycle processes across more than a quarter of the Earth’s land surface could be achieved by addressing the moisture sensitivity of dryland C uptake.</abstract><doi>10.1088/1748-9326/ac1a38</doi><orcidid>https://orcid.org/0000-0001-6797-4836</orcidid><orcidid>https://orcid.org/0000-0003-3557-7929</orcidid><orcidid>https://orcid.org/0000-0002-3829-4265</orcidid><orcidid>https://orcid.org/0000-0002-5760-3254</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-9326 |
ispartof | Environmental research letters, 2021-09, Vol.16 (9), p.94023 |
issn | 1748-9326 1748-9326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1748_9326_ac1a38 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry |
title | Dynamic global vegetation models underestimate net CO 2 flux mean and inter-annual variability in dryland ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20global%20vegetation%20models%20underestimate%20net%20CO%202%20flux%20mean%20and%20inter-annual%20variability%20in%20dryland%20ecosystems&rft.jtitle=Environmental%20research%20letters&rft.au=MacBean,%20Natasha&rft.date=2021-09-01&rft.volume=16&rft.issue=9&rft.spage=94023&rft.pages=94023-&rft.issn=1748-9326&rft.eissn=1748-9326&rft_id=info:doi/10.1088/1748-9326/ac1a38&rft_dat=%3Ccrossref%3E10_1088_1748_9326_ac1a38%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |