The connection between forest degradation and urban energy demand in sub-Saharan Africa: a characterization based on high-resolution remote sensing data
Charcoal is a key energy source for urban households in sub-Saharan Africa and charcoal production is the main cause of forest degradation across the region. We used multitemporal high-resolution remote sensing optical imagery to quantify the extent and intensity of forest degradation associated wit...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2021-06, Vol.16 (6), p.64020, Article 064020 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Charcoal is a key energy source for urban households in sub-Saharan Africa and charcoal production is the main cause of forest degradation across the region. We used multitemporal high-resolution remote sensing optical imagery to quantify the extent and intensity of forest degradation associated with charcoal production and its impact on forest carbon stocks for the main supplying area of an African capital. This analysis documents the advance of forest degradation and quantifies its aboveground biomass removals over a seven-year period, registering that, between 2013 and 2016, the average annual area under charcoal production was 103 sq.km and the annual aboveground biomass removals reached 1081 000 (SD = 2461) Mg. Kiln densities in the study area rose to 2 kilns-ha, with an average of 90.7 Mg ha^(−1) of extracted aboveground biomass. Charcoal production was responsible for the degradation of 55.5% of the mopane woodlands in the study area between 2013 and 2019. We estimated post-disturbance recovery times using an ecosystem model calibrated for the study area. The simulations showed that recovery times could require up to 150 years for current aboveground biomass extraction rates. The results of the remote sensing analysis and the simulations of the ecosystem model corroborate the unsustainability of the present patterns of charcoal production. The detailed characterization of the spatial and temporal patterns of charcoal production was combined with household survey information to quantify the impact of the urban energy demand of the Maputo urban area on forest carbon stocks. The analysis shows that Maputo charcoal demand was responsible for the annual degradation of up to 175.3 sq.km and that the contribution of the study area to this demand fluctuated between 75% and 33% over the study period. The extent, advance pace and distance from urban centers documented in this study support the idea that forest degradation from charcoal production cannot merely be considered a peri-urban process. The intensity of the aboveground biomass (AGB) removals and its contribution to forest carbon stocks changes is significant at the national and regional levels. |
---|---|
ISSN: | 1748-9326 1748-9326 |
DOI: | 10.1088/1748-9326/abfc05 |