Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method
Wildland fires exert substantial impacts on tundra ecosystems of the high northern latitudes (HNL), ranging from biogeochemical impact on climate system to habitat suitability for various species. Cloud-to-ground (CG) lightning is the primary ignition source of wildfires. It is critical to understan...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2020-11, Vol.15 (11), p.115009, Article 115009 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 115009 |
container_title | Environmental research letters |
container_volume | 15 |
creator | He, Jiaying Loboda, Tatiana V |
description | Wildland fires exert substantial impacts on tundra ecosystems of the high northern latitudes (HNL), ranging from biogeochemical impact on climate system to habitat suitability for various species. Cloud-to-ground (CG) lightning is the primary ignition source of wildfires. It is critical to understand mechanisms and factors driving lightning strikes in this cold, treeless environment to support operational modeling and forecasting of fire activity. Existing studies on lightning strikes primarily focus on Alaskan and Canadian boreal forests where land-atmospheric interactions are different and, thus, not likely to represent tundra conditions. In this study, we designed an empirical-dynamical method integrating Weather Research and Forecast (WRF) simulation and machine learning algorithm to model the probability of lightning strikes across Alaskan tundra between 2001 and 2017. We recommended using Thompson 2-moment and Mellor-Yamada-Janjic schemes as microphysics and planetary boundary layer parameterizations for WRF simulations in the tundra. Our modeling and forecasting test results have shown a strong capability to predict CG lightning probability in Alaskan tundra, with the values of area under the receiver operator characteristics curves above 0.9. We found that parcel lifted index and vertical profiles of atmospheric variables, including geopotential height, dew point temperature, relative humidity, and velocity speed, important in predicting lightning occurrence, suggesting the key role of convection in lightning formation in the tundra. Our method can be applied to data-scarce regions and support future studies of fire potential in the HNL. |
doi_str_mv | 10.1088/1748-9326/abbc3b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_9326_abbc3b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_48439623e83e4bb0996d6c3acbbe3a80</doaj_id><sourcerecordid>2582425708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-2642024b7c8eef04c1d6de74da60765579c7b03f8921c3c09a80031f95dbd44f3</originalsourceid><addsrcrecordid>eNqNUU1r3DAQNaWFpknvPQp6SWmd6Mu2fAxLtw2kBEJKjkIfY1tbr7WVtIT8nP7Tyuuy7aGFgmCGmffejOYVxRuCLwgW4pI0XJQto_Wl0tow_aw4OZae_5G_LF7FuMG44lUjToofX7yF0U09MqPf2zL5sg9-P1k0un5I09zZBa-VdqNLT8hN6GpU8ZuaUMqooFAaMr4fcoTcTdAHlZyfkO_QA6hcDegOIqhgBqSy7toHMComdP5wt36HtvP8Q2OrzOAmQGPGHuZuIQ3enhUvOjVGeP0rnhZf1x_vV5_Lm9tP16urm9Jw3qaS1pxiynVjBECHuSG2ttBwq2rc1FXVtKbRmHWipcQwg1slMGakayurLecdOy2uF13r1Ubugtuq8CS9cvJQ8KGXKiRnRpBccNbWlIFgwLXGbVvb2jBltAaWdbPW20Urn-77HmKSG78PU15f0kpQTqsGi4zCC8oEH2OA7jiVYDmbKmfX5OyaXEzNFLFQHkH7LhoHk4EjDWdbRc0Y5TnDZOXSwYpV9jNl6vv_p2b0-YJ2fvd7eQijJJUkJL8K41bu7Hy4D3-B_vMLPwFEIdOp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582425708</pqid></control><display><type>article</type><title>Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>He, Jiaying ; Loboda, Tatiana V</creator><creatorcontrib>He, Jiaying ; Loboda, Tatiana V</creatorcontrib><description>Wildland fires exert substantial impacts on tundra ecosystems of the high northern latitudes (HNL), ranging from biogeochemical impact on climate system to habitat suitability for various species. Cloud-to-ground (CG) lightning is the primary ignition source of wildfires. It is critical to understand mechanisms and factors driving lightning strikes in this cold, treeless environment to support operational modeling and forecasting of fire activity. Existing studies on lightning strikes primarily focus on Alaskan and Canadian boreal forests where land-atmospheric interactions are different and, thus, not likely to represent tundra conditions. In this study, we designed an empirical-dynamical method integrating Weather Research and Forecast (WRF) simulation and machine learning algorithm to model the probability of lightning strikes across Alaskan tundra between 2001 and 2017. We recommended using Thompson 2-moment and Mellor-Yamada-Janjic schemes as microphysics and planetary boundary layer parameterizations for WRF simulations in the tundra. Our modeling and forecasting test results have shown a strong capability to predict CG lightning probability in Alaskan tundra, with the values of area under the receiver operator characteristics curves above 0.9. We found that parcel lifted index and vertical profiles of atmospheric variables, including geopotential height, dew point temperature, relative humidity, and velocity speed, important in predicting lightning occurrence, suggesting the key role of convection in lightning formation in the tundra. Our method can be applied to data-scarce regions and support future studies of fire potential in the HNL.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/abbc3b</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>BRISTOL: IOP Publishing</publisher><subject>Alaskan tundra ; Algorithms ; Atmospheric models ; Boreal forests ; Boundary layers ; Climate models ; Climate system ; cloud-to-ground lightning ; Convection ; Dew point ; empirical-dynamic modeling ; Environment models ; Environmental Sciences ; Environmental Sciences & Ecology ; Geopotential ; Geopotential height ; Learning algorithms ; Life Sciences & Biomedicine ; Lightning ; Lightning strikes ; lightning-ignited wildfire ; Machine learning ; Meteorology & Atmospheric Sciences ; Microphysics ; Physical Sciences ; Planetary boundary layer ; random forest ; Relative humidity ; Science & Technology ; Taiga & tundra ; Tundra ; Weather forecasting ; Weather Research and Forecast (WRF) ; Wildfires</subject><ispartof>Environmental research letters, 2020-11, Vol.15 (11), p.115009, Article 115009</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>Copyright IOP Publishing Nov 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000586332400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c449t-2642024b7c8eef04c1d6de74da60765579c7b03f8921c3c09a80031f95dbd44f3</citedby><cites>FETCH-LOGICAL-c449t-2642024b7c8eef04c1d6de74da60765579c7b03f8921c3c09a80031f95dbd44f3</cites><orcidid>0000-0002-2537-2447 ; 0000-0002-6394-5218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/abbc3b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,865,2103,2115,27929,27930,28253,38873,38895,53845,53872</link.rule.ids></links><search><creatorcontrib>He, Jiaying</creatorcontrib><creatorcontrib>Loboda, Tatiana V</creatorcontrib><title>Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>ENVIRON RES LETT</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Wildland fires exert substantial impacts on tundra ecosystems of the high northern latitudes (HNL), ranging from biogeochemical impact on climate system to habitat suitability for various species. Cloud-to-ground (CG) lightning is the primary ignition source of wildfires. It is critical to understand mechanisms and factors driving lightning strikes in this cold, treeless environment to support operational modeling and forecasting of fire activity. Existing studies on lightning strikes primarily focus on Alaskan and Canadian boreal forests where land-atmospheric interactions are different and, thus, not likely to represent tundra conditions. In this study, we designed an empirical-dynamical method integrating Weather Research and Forecast (WRF) simulation and machine learning algorithm to model the probability of lightning strikes across Alaskan tundra between 2001 and 2017. We recommended using Thompson 2-moment and Mellor-Yamada-Janjic schemes as microphysics and planetary boundary layer parameterizations for WRF simulations in the tundra. Our modeling and forecasting test results have shown a strong capability to predict CG lightning probability in Alaskan tundra, with the values of area under the receiver operator characteristics curves above 0.9. We found that parcel lifted index and vertical profiles of atmospheric variables, including geopotential height, dew point temperature, relative humidity, and velocity speed, important in predicting lightning occurrence, suggesting the key role of convection in lightning formation in the tundra. Our method can be applied to data-scarce regions and support future studies of fire potential in the HNL.</description><subject>Alaskan tundra</subject><subject>Algorithms</subject><subject>Atmospheric models</subject><subject>Boreal forests</subject><subject>Boundary layers</subject><subject>Climate models</subject><subject>Climate system</subject><subject>cloud-to-ground lightning</subject><subject>Convection</subject><subject>Dew point</subject><subject>empirical-dynamic modeling</subject><subject>Environment models</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Geopotential</subject><subject>Geopotential height</subject><subject>Learning algorithms</subject><subject>Life Sciences & Biomedicine</subject><subject>Lightning</subject><subject>Lightning strikes</subject><subject>lightning-ignited wildfire</subject><subject>Machine learning</subject><subject>Meteorology & Atmospheric Sciences</subject><subject>Microphysics</subject><subject>Physical Sciences</subject><subject>Planetary boundary layer</subject><subject>random forest</subject><subject>Relative humidity</subject><subject>Science & Technology</subject><subject>Taiga & tundra</subject><subject>Tundra</subject><subject>Weather forecasting</subject><subject>Weather Research and Forecast (WRF)</subject><subject>Wildfires</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNUU1r3DAQNaWFpknvPQp6SWmd6Mu2fAxLtw2kBEJKjkIfY1tbr7WVtIT8nP7Tyuuy7aGFgmCGmffejOYVxRuCLwgW4pI0XJQto_Wl0tow_aw4OZae_5G_LF7FuMG44lUjToofX7yF0U09MqPf2zL5sg9-P1k0un5I09zZBa-VdqNLT8hN6GpU8ZuaUMqooFAaMr4fcoTcTdAHlZyfkO_QA6hcDegOIqhgBqSy7toHMComdP5wt36HtvP8Q2OrzOAmQGPGHuZuIQ3enhUvOjVGeP0rnhZf1x_vV5_Lm9tP16urm9Jw3qaS1pxiynVjBECHuSG2ttBwq2rc1FXVtKbRmHWipcQwg1slMGakayurLecdOy2uF13r1Ubugtuq8CS9cvJQ8KGXKiRnRpBccNbWlIFgwLXGbVvb2jBltAaWdbPW20Urn-77HmKSG78PU15f0kpQTqsGi4zCC8oEH2OA7jiVYDmbKmfX5OyaXEzNFLFQHkH7LhoHk4EjDWdbRc0Y5TnDZOXSwYpV9jNl6vv_p2b0-YJ2fvd7eQijJJUkJL8K41bu7Hy4D3-B_vMLPwFEIdOp</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>He, Jiaying</creator><creator>Loboda, Tatiana V</creator><general>IOP Publishing</general><general>IOP Publishing Ltd</general><scope>O3W</scope><scope>TSCCA</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2537-2447</orcidid><orcidid>https://orcid.org/0000-0002-6394-5218</orcidid></search><sort><creationdate>20201101</creationdate><title>Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method</title><author>He, Jiaying ; Loboda, Tatiana V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-2642024b7c8eef04c1d6de74da60765579c7b03f8921c3c09a80031f95dbd44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alaskan tundra</topic><topic>Algorithms</topic><topic>Atmospheric models</topic><topic>Boreal forests</topic><topic>Boundary layers</topic><topic>Climate models</topic><topic>Climate system</topic><topic>cloud-to-ground lightning</topic><topic>Convection</topic><topic>Dew point</topic><topic>empirical-dynamic modeling</topic><topic>Environment models</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Geopotential</topic><topic>Geopotential height</topic><topic>Learning algorithms</topic><topic>Life Sciences & Biomedicine</topic><topic>Lightning</topic><topic>Lightning strikes</topic><topic>lightning-ignited wildfire</topic><topic>Machine learning</topic><topic>Meteorology & Atmospheric Sciences</topic><topic>Microphysics</topic><topic>Physical Sciences</topic><topic>Planetary boundary layer</topic><topic>random forest</topic><topic>Relative humidity</topic><topic>Science & Technology</topic><topic>Taiga & tundra</topic><topic>Tundra</topic><topic>Weather forecasting</topic><topic>Weather Research and Forecast (WRF)</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jiaying</creatorcontrib><creatorcontrib>Loboda, Tatiana V</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jiaying</au><au>Loboda, Tatiana V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><stitle>ENVIRON RES LETT</stitle><addtitle>Environ. Res. Lett</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>115009</spage><pages>115009-</pages><artnum>115009</artnum><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Wildland fires exert substantial impacts on tundra ecosystems of the high northern latitudes (HNL), ranging from biogeochemical impact on climate system to habitat suitability for various species. Cloud-to-ground (CG) lightning is the primary ignition source of wildfires. It is critical to understand mechanisms and factors driving lightning strikes in this cold, treeless environment to support operational modeling and forecasting of fire activity. Existing studies on lightning strikes primarily focus on Alaskan and Canadian boreal forests where land-atmospheric interactions are different and, thus, not likely to represent tundra conditions. In this study, we designed an empirical-dynamical method integrating Weather Research and Forecast (WRF) simulation and machine learning algorithm to model the probability of lightning strikes across Alaskan tundra between 2001 and 2017. We recommended using Thompson 2-moment and Mellor-Yamada-Janjic schemes as microphysics and planetary boundary layer parameterizations for WRF simulations in the tundra. Our modeling and forecasting test results have shown a strong capability to predict CG lightning probability in Alaskan tundra, with the values of area under the receiver operator characteristics curves above 0.9. We found that parcel lifted index and vertical profiles of atmospheric variables, including geopotential height, dew point temperature, relative humidity, and velocity speed, important in predicting lightning occurrence, suggesting the key role of convection in lightning formation in the tundra. Our method can be applied to data-scarce regions and support future studies of fire potential in the HNL.</abstract><cop>BRISTOL</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/abbc3b</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2537-2447</orcidid><orcidid>https://orcid.org/0000-0002-6394-5218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-9326 |
ispartof | Environmental research letters, 2020-11, Vol.15 (11), p.115009, Article 115009 |
issn | 1748-9326 1748-9326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1748_9326_abbc3b |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Alaskan tundra Algorithms Atmospheric models Boreal forests Boundary layers Climate models Climate system cloud-to-ground lightning Convection Dew point empirical-dynamic modeling Environment models Environmental Sciences Environmental Sciences & Ecology Geopotential Geopotential height Learning algorithms Life Sciences & Biomedicine Lightning Lightning strikes lightning-ignited wildfire Machine learning Meteorology & Atmospheric Sciences Microphysics Physical Sciences Planetary boundary layer random forest Relative humidity Science & Technology Taiga & tundra Tundra Weather forecasting Weather Research and Forecast (WRF) Wildfires |
title | Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20cloud-to-ground%20lightning%20probability%20in%20Alaskan%20tundra%20through%20the%20integration%20of%20Weather%20Research%20and%20Forecast%20(WRF)%20model%20and%20machine%20learning%20method&rft.jtitle=Environmental%20research%20letters&rft.au=He,%20Jiaying&rft.date=2020-11-01&rft.volume=15&rft.issue=11&rft.spage=115009&rft.pages=115009-&rft.artnum=115009&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/abbc3b&rft_dat=%3Cproquest_cross%3E2582425708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582425708&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_48439623e83e4bb0996d6c3acbbe3a80&rfr_iscdi=true |