Global patterns of shallow groundwater temperatures

Only meters below our feet, shallow aquifers serve as sustainable energy source and provide freshwater storage and ecological habitats. All of these aspects are crucially impacted by the thermal regime of the subsurface. Due to the limited accessibility of aquifers however, temperature measurements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2017-03, Vol.12 (3), p.34005
Hauptverfasser: Benz, Susanne A, Bayer, Peter, Blum, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Only meters below our feet, shallow aquifers serve as sustainable energy source and provide freshwater storage and ecological habitats. All of these aspects are crucially impacted by the thermal regime of the subsurface. Due to the limited accessibility of aquifers however, temperature measurements are scarce. Most commonly, shallow groundwater temperatures are approximated by adding an offset to annual mean surface air temperatures. Yet, the value of this offset is not well defined, often arbitrarily set, and rarely validated. Here, we propose the usage of satellite-derived land surface temperatures instead of surface air temperatures. 2 548 measurement points in 29 countries are compiled, revealing characteristic trends in the offset between shallow groundwater temperatures and land surface temperatures. Here it is shown that evapotranspiration and snow cover impact on this offset globally, through latent heat flow and insulation. Considering these two processes only, global shallow groundwater temperatures are estimated in a resolution of approximately 1 km × 1 km. When comparing these estimated groundwater temperatures with measured ones a coefficient of determination of 0.95 and a root mean square error of 1.4 K is found.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/aa5fb0