Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces

Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical materials (Bristol) 2023-01, Vol.18 (1), p.15020
Hauptverfasser: Perkucin, Ivana, Lau, Kylie S K, Morshead, Cindi M, Naguib, Hani E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15020
container_title Biomedical materials (Bristol)
container_volume 18
creator Perkucin, Ivana
Lau, Kylie S K
Morshead, Cindi M
Naguib, Hani E
description Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.
doi_str_mv 10.1088/1748-605X/aca578
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_605X_aca578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756123706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-4c01d5bad2ee2f9d9e55d28a3d10617c9ee3d413c14dedc496d70466bae13c2b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqWwM6FsMBBqx3Y-Rqj4kiqxgMRmOfaldZXEwU6Q-u9xldIJMd3p7rlXugehS4LvCM7zOclYHqeYf86lkjzLj9D0MDo-9IxM0Jn3G4x5wWlxiiY05TTLSD5F1YOxsWl9ZxzoSNlWD6o33xBJvQa_a0rpw8a2kZK1MkMTVw7Cul6ZVvYQrbfa2RXUPqqsi0pjoQbVO9saFZm2B1dJBf4cnVSy9nCxrzP08fT4vniJl2_Pr4v7ZawYwX3MFCaal1InAElV6AI410kuqSY4JZkqAKhmhCrCNGjFilRnmKVpKSEMk5LO0M2Y2zn7NYDvRWO8grqWLdjBiyTjKUlohtOA4hFVznrvoBKdM410W0Gw2NkVO31ip1KMdsPJ1T59KBvQh4NfnQG4HQFjO7Gxg2vDs__lXf-Bl00jSKAFJhwnWHS6oj_m5ZNf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756123706</pqid></control><display><type>article</type><title>Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Perkucin, Ivana ; Lau, Kylie S K ; Morshead, Cindi M ; Naguib, Hani E</creator><creatorcontrib>Perkucin, Ivana ; Lau, Kylie S K ; Morshead, Cindi M ; Naguib, Hani E</creatorcontrib><description>Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.</description><identifier>ISSN: 1748-6041</identifier><identifier>EISSN: 1748-605X</identifier><identifier>DOI: 10.1088/1748-605X/aca578</identifier><identifier>PMID: 36537718</identifier><identifier>CODEN: BMBUCS</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>adhesive ; Adhesives - chemistry ; alginate ; Animals ; biomaterial ; Bivalvia ; Dihydroxyphenylalanine - chemistry ; DOPA ; Hydrogels - chemistry ; Neural Stem Cells ; Polymers - chemistry ; Proteins - chemistry</subject><ispartof>Biomedical materials (Bristol), 2023-01, Vol.18 (1), p.15020</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-4c01d5bad2ee2f9d9e55d28a3d10617c9ee3d413c14dedc496d70466bae13c2b3</citedby><cites>FETCH-LOGICAL-c410t-4c01d5bad2ee2f9d9e55d28a3d10617c9ee3d413c14dedc496d70466bae13c2b3</cites><orcidid>0000-0003-4822-9990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-605X/aca578/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36537718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkucin, Ivana</creatorcontrib><creatorcontrib>Lau, Kylie S K</creatorcontrib><creatorcontrib>Morshead, Cindi M</creatorcontrib><creatorcontrib>Naguib, Hani E</creatorcontrib><title>Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces</title><title>Biomedical materials (Bristol)</title><addtitle>BMM</addtitle><addtitle>Biomed. Mater</addtitle><description>Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.</description><subject>adhesive</subject><subject>Adhesives - chemistry</subject><subject>alginate</subject><subject>Animals</subject><subject>biomaterial</subject><subject>Bivalvia</subject><subject>Dihydroxyphenylalanine - chemistry</subject><subject>DOPA</subject><subject>Hydrogels - chemistry</subject><subject>Neural Stem Cells</subject><subject>Polymers - chemistry</subject><subject>Proteins - chemistry</subject><issn>1748-6041</issn><issn>1748-605X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqWwM6FsMBBqx3Y-Rqj4kiqxgMRmOfaldZXEwU6Q-u9xldIJMd3p7rlXugehS4LvCM7zOclYHqeYf86lkjzLj9D0MDo-9IxM0Jn3G4x5wWlxiiY05TTLSD5F1YOxsWl9ZxzoSNlWD6o33xBJvQa_a0rpw8a2kZK1MkMTVw7Cul6ZVvYQrbfa2RXUPqqsi0pjoQbVO9saFZm2B1dJBf4cnVSy9nCxrzP08fT4vniJl2_Pr4v7ZawYwX3MFCaal1InAElV6AI410kuqSY4JZkqAKhmhCrCNGjFilRnmKVpKSEMk5LO0M2Y2zn7NYDvRWO8grqWLdjBiyTjKUlohtOA4hFVznrvoBKdM410W0Gw2NkVO31ip1KMdsPJ1T59KBvQh4NfnQG4HQFjO7Gxg2vDs__lXf-Bl00jSKAFJhwnWHS6oj_m5ZNf</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Perkucin, Ivana</creator><creator>Lau, Kylie S K</creator><creator>Morshead, Cindi M</creator><creator>Naguib, Hani E</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4822-9990</orcidid></search><sort><creationdate>20230101</creationdate><title>Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces</title><author>Perkucin, Ivana ; Lau, Kylie S K ; Morshead, Cindi M ; Naguib, Hani E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-4c01d5bad2ee2f9d9e55d28a3d10617c9ee3d413c14dedc496d70466bae13c2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adhesive</topic><topic>Adhesives - chemistry</topic><topic>alginate</topic><topic>Animals</topic><topic>biomaterial</topic><topic>Bivalvia</topic><topic>Dihydroxyphenylalanine - chemistry</topic><topic>DOPA</topic><topic>Hydrogels - chemistry</topic><topic>Neural Stem Cells</topic><topic>Polymers - chemistry</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkucin, Ivana</creatorcontrib><creatorcontrib>Lau, Kylie S K</creatorcontrib><creatorcontrib>Morshead, Cindi M</creatorcontrib><creatorcontrib>Naguib, Hani E</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical materials (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkucin, Ivana</au><au>Lau, Kylie S K</au><au>Morshead, Cindi M</au><au>Naguib, Hani E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces</atitle><jtitle>Biomedical materials (Bristol)</jtitle><stitle>BMM</stitle><addtitle>Biomed. Mater</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>18</volume><issue>1</issue><spage>15020</spage><pages>15020-</pages><issn>1748-6041</issn><eissn>1748-605X</eissn><coden>BMBUCS</coden><abstract>Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36537718</pmid><doi>10.1088/1748-605X/aca578</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4822-9990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-6041
ispartof Biomedical materials (Bristol), 2023-01, Vol.18 (1), p.15020
issn 1748-6041
1748-605X
language eng
recordid cdi_crossref_primary_10_1088_1748_605X_aca578
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects adhesive
Adhesives - chemistry
alginate
Animals
biomaterial
Bivalvia
Dihydroxyphenylalanine - chemistry
DOPA
Hydrogels - chemistry
Neural Stem Cells
Polymers - chemistry
Proteins - chemistry
title Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20conductive%20adhesive%20based%20on%20calcium-free%20alginate%20hydrogels%20for%20bioelectronic%20interfaces&rft.jtitle=Biomedical%20materials%20(Bristol)&rft.au=Perkucin,%20Ivana&rft.date=2023-01-01&rft.volume=18&rft.issue=1&rft.spage=15020&rft.pages=15020-&rft.issn=1748-6041&rft.eissn=1748-605X&rft.coden=BMBUCS&rft_id=info:doi/10.1088/1748-605X/aca578&rft_dat=%3Cproquest_cross%3E2756123706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756123706&rft_id=info:pmid/36537718&rfr_iscdi=true