Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces
Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of ne...
Gespeichert in:
Veröffentlicht in: | Biomedical materials (Bristol) 2023-01, Vol.18 (1), p.15020 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15020 |
container_title | Biomedical materials (Bristol) |
container_volume | 18 |
creator | Perkucin, Ivana Lau, Kylie S K Morshead, Cindi M Naguib, Hani E |
description | Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells. |
doi_str_mv | 10.1088/1748-605X/aca578 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_605X_aca578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756123706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-4c01d5bad2ee2f9d9e55d28a3d10617c9ee3d413c14dedc496d70466bae13c2b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqWwM6FsMBBqx3Y-Rqj4kiqxgMRmOfaldZXEwU6Q-u9xldIJMd3p7rlXugehS4LvCM7zOclYHqeYf86lkjzLj9D0MDo-9IxM0Jn3G4x5wWlxiiY05TTLSD5F1YOxsWl9ZxzoSNlWD6o33xBJvQa_a0rpw8a2kZK1MkMTVw7Cul6ZVvYQrbfa2RXUPqqsi0pjoQbVO9saFZm2B1dJBf4cnVSy9nCxrzP08fT4vniJl2_Pr4v7ZawYwX3MFCaal1InAElV6AI410kuqSY4JZkqAKhmhCrCNGjFilRnmKVpKSEMk5LO0M2Y2zn7NYDvRWO8grqWLdjBiyTjKUlohtOA4hFVznrvoBKdM410W0Gw2NkVO31ip1KMdsPJ1T59KBvQh4NfnQG4HQFjO7Gxg2vDs__lXf-Bl00jSKAFJhwnWHS6oj_m5ZNf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756123706</pqid></control><display><type>article</type><title>Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Perkucin, Ivana ; Lau, Kylie S K ; Morshead, Cindi M ; Naguib, Hani E</creator><creatorcontrib>Perkucin, Ivana ; Lau, Kylie S K ; Morshead, Cindi M ; Naguib, Hani E</creatorcontrib><description>Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.</description><identifier>ISSN: 1748-6041</identifier><identifier>EISSN: 1748-605X</identifier><identifier>DOI: 10.1088/1748-605X/aca578</identifier><identifier>PMID: 36537718</identifier><identifier>CODEN: BMBUCS</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>adhesive ; Adhesives - chemistry ; alginate ; Animals ; biomaterial ; Bivalvia ; Dihydroxyphenylalanine - chemistry ; DOPA ; Hydrogels - chemistry ; Neural Stem Cells ; Polymers - chemistry ; Proteins - chemistry</subject><ispartof>Biomedical materials (Bristol), 2023-01, Vol.18 (1), p.15020</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-4c01d5bad2ee2f9d9e55d28a3d10617c9ee3d413c14dedc496d70466bae13c2b3</citedby><cites>FETCH-LOGICAL-c410t-4c01d5bad2ee2f9d9e55d28a3d10617c9ee3d413c14dedc496d70466bae13c2b3</cites><orcidid>0000-0003-4822-9990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-605X/aca578/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36537718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkucin, Ivana</creatorcontrib><creatorcontrib>Lau, Kylie S K</creatorcontrib><creatorcontrib>Morshead, Cindi M</creatorcontrib><creatorcontrib>Naguib, Hani E</creatorcontrib><title>Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces</title><title>Biomedical materials (Bristol)</title><addtitle>BMM</addtitle><addtitle>Biomed. Mater</addtitle><description>Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.</description><subject>adhesive</subject><subject>Adhesives - chemistry</subject><subject>alginate</subject><subject>Animals</subject><subject>biomaterial</subject><subject>Bivalvia</subject><subject>Dihydroxyphenylalanine - chemistry</subject><subject>DOPA</subject><subject>Hydrogels - chemistry</subject><subject>Neural Stem Cells</subject><subject>Polymers - chemistry</subject><subject>Proteins - chemistry</subject><issn>1748-6041</issn><issn>1748-605X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqWwM6FsMBBqx3Y-Rqj4kiqxgMRmOfaldZXEwU6Q-u9xldIJMd3p7rlXugehS4LvCM7zOclYHqeYf86lkjzLj9D0MDo-9IxM0Jn3G4x5wWlxiiY05TTLSD5F1YOxsWl9ZxzoSNlWD6o33xBJvQa_a0rpw8a2kZK1MkMTVw7Cul6ZVvYQrbfa2RXUPqqsi0pjoQbVO9saFZm2B1dJBf4cnVSy9nCxrzP08fT4vniJl2_Pr4v7ZawYwX3MFCaal1InAElV6AI410kuqSY4JZkqAKhmhCrCNGjFilRnmKVpKSEMk5LO0M2Y2zn7NYDvRWO8grqWLdjBiyTjKUlohtOA4hFVznrvoBKdM410W0Gw2NkVO31ip1KMdsPJ1T59KBvQh4NfnQG4HQFjO7Gxg2vDs__lXf-Bl00jSKAFJhwnWHS6oj_m5ZNf</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Perkucin, Ivana</creator><creator>Lau, Kylie S K</creator><creator>Morshead, Cindi M</creator><creator>Naguib, Hani E</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4822-9990</orcidid></search><sort><creationdate>20230101</creationdate><title>Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces</title><author>Perkucin, Ivana ; Lau, Kylie S K ; Morshead, Cindi M ; Naguib, Hani E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-4c01d5bad2ee2f9d9e55d28a3d10617c9ee3d413c14dedc496d70466bae13c2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adhesive</topic><topic>Adhesives - chemistry</topic><topic>alginate</topic><topic>Animals</topic><topic>biomaterial</topic><topic>Bivalvia</topic><topic>Dihydroxyphenylalanine - chemistry</topic><topic>DOPA</topic><topic>Hydrogels - chemistry</topic><topic>Neural Stem Cells</topic><topic>Polymers - chemistry</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkucin, Ivana</creatorcontrib><creatorcontrib>Lau, Kylie S K</creatorcontrib><creatorcontrib>Morshead, Cindi M</creatorcontrib><creatorcontrib>Naguib, Hani E</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical materials (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkucin, Ivana</au><au>Lau, Kylie S K</au><au>Morshead, Cindi M</au><au>Naguib, Hani E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces</atitle><jtitle>Biomedical materials (Bristol)</jtitle><stitle>BMM</stitle><addtitle>Biomed. Mater</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>18</volume><issue>1</issue><spage>15020</spage><pages>15020-</pages><issn>1748-6041</issn><eissn>1748-605X</eissn><coden>BMBUCS</coden><abstract>Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36537718</pmid><doi>10.1088/1748-605X/aca578</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4822-9990</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-6041 |
ispartof | Biomedical materials (Bristol), 2023-01, Vol.18 (1), p.15020 |
issn | 1748-6041 1748-605X |
language | eng |
recordid | cdi_crossref_primary_10_1088_1748_605X_aca578 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | adhesive Adhesives - chemistry alginate Animals biomaterial Bivalvia Dihydroxyphenylalanine - chemistry DOPA Hydrogels - chemistry Neural Stem Cells Polymers - chemistry Proteins - chemistry |
title | Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20conductive%20adhesive%20based%20on%20calcium-free%20alginate%20hydrogels%20for%20bioelectronic%20interfaces&rft.jtitle=Biomedical%20materials%20(Bristol)&rft.au=Perkucin,%20Ivana&rft.date=2023-01-01&rft.volume=18&rft.issue=1&rft.spage=15020&rft.pages=15020-&rft.issn=1748-6041&rft.eissn=1748-605X&rft.coden=BMBUCS&rft_id=info:doi/10.1088/1748-605X/aca578&rft_dat=%3Cproquest_cross%3E2756123706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756123706&rft_id=info:pmid/36537718&rfr_iscdi=true |