Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery

The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical materials (Bristol) 2018-09, Vol.13 (6), p.065009-065009
Hauptverfasser: Horakova, Jana, Mikes, Petr, Lukas, David, Saman, Ales, Jencova, Vera, Klapstova, Andrea, Svarcova, Tereza, Ackermann, Michal, Novotny, Vit, Kalab, Martin, Lonsky, Vladimir, Bartos, Martin, Rampichova, Michala, Litvinec, Andrej, Kubikova, Tereza, Tomasek, Petr, Tonar, Zbynek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 065009
container_issue 6
container_start_page 065009
container_title Biomedical materials (Bristol)
container_volume 13
creator Horakova, Jana
Mikes, Petr
Lukas, David
Saman, Ales
Jencova, Vera
Klapstova, Andrea
Svarcova, Tereza
Ackermann, Michal
Novotny, Vit
Kalab, Martin
Lonsky, Vladimir
Bartos, Martin
Rampichova, Michala
Litvinec, Andrej
Kubikova, Tereza
Tomasek, Petr
Tonar, Zbynek
description The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters of 5.58 0.10 m. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.
doi_str_mv 10.1088/1748-605X/aade9d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_605X_aade9d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099436441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-e991f2fc8c355f061390e234d2529c37a2b61347f6ca61971dbfe82ba0bede763</originalsourceid><addsrcrecordid>eNp9kEFLHTEUhYNU1Kr7rkp2tdCpyWQyM1kWUSs8cGPBXbhJbtqRmZdpkhEe9Mebx1PpQlwlHL5zSD5CPnH2nbO-P-dd01ctk_fnAA6V2yNHr9GH_-6H5GNKD4xJJYU6IIeC8a6TfX1E_l2OaHMMaV7W9BGSXUaI9HcEnxP1YOJgIaOjPoaJzmHcnK2qEWweHFY2VLSyMMewTcIav9IlFRYSBWo2M6QyESLNf5BGMGbI1EIMpUshZoybE7LvYUx4-nwek19Xl3cXP6vV7fXNxY9VZSXvc4VKcV9721shpWctF4phLRpXy1pZ0UFtStZ0vrXQctVxZzz2tQFm0GHXimNyttstT_27YMp6GpLFcYQ1hiXpminViLZpeEHZDrXFSYro9RyHCeJGc6a3zvVWqt5K1TvnpfL5eX0xE7rXwovkAnzbAUOY9UNY4rp89r29L2_gZpo0F7rVrJWMKT07L54AAYabCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099436441</pqid></control><display><type>article</type><title>Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Horakova, Jana ; Mikes, Petr ; Lukas, David ; Saman, Ales ; Jencova, Vera ; Klapstova, Andrea ; Svarcova, Tereza ; Ackermann, Michal ; Novotny, Vit ; Kalab, Martin ; Lonsky, Vladimir ; Bartos, Martin ; Rampichova, Michala ; Litvinec, Andrej ; Kubikova, Tereza ; Tomasek, Petr ; Tonar, Zbynek</creator><creatorcontrib>Horakova, Jana ; Mikes, Petr ; Lukas, David ; Saman, Ales ; Jencova, Vera ; Klapstova, Andrea ; Svarcova, Tereza ; Ackermann, Michal ; Novotny, Vit ; Kalab, Martin ; Lonsky, Vladimir ; Bartos, Martin ; Rampichova, Michala ; Litvinec, Andrej ; Kubikova, Tereza ; Tomasek, Petr ; Tonar, Zbynek</creatorcontrib><description>The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters of 5.58 0.10 m. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.</description><identifier>ISSN: 1748-605X</identifier><identifier>EISSN: 1748-605X</identifier><identifier>DOI: 10.1088/1748-605X/aade9d</identifier><identifier>PMID: 30177582</identifier><identifier>CODEN: BMBUCS</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>3T3 Cells ; Animals ; Aorta - pathology ; Blood Vessel Prosthesis ; caprolactone ; Carotid Arteries - pathology ; Cell Adhesion ; Collagen - metabolism ; copolymer poly ; Dogs ; electrospinning ; Endothelial Cells ; Fibroblasts - cytology ; Human Umbilical Vein Endothelial Cells ; Humans ; Imaging, Three-Dimensional ; lactide-co ; Mice ; Myocytes, Smooth Muscle - cytology ; Polyesters - chemistry ; Polymers - chemistry ; Porosity ; rabbit animal model ; Rabbits ; Rats ; Regeneration ; Swine ; Tissue Engineering - methods ; Tissue Scaffolds ; vascular graft ; Vascular Grafting ; X-Ray Microtomography</subject><ispartof>Biomedical materials (Bristol), 2018-09, Vol.13 (6), p.065009-065009</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-e991f2fc8c355f061390e234d2529c37a2b61347f6ca61971dbfe82ba0bede763</citedby><cites>FETCH-LOGICAL-c518t-e991f2fc8c355f061390e234d2529c37a2b61347f6ca61971dbfe82ba0bede763</cites><orcidid>0000-0003-2926-0570 ; 0000-0003-2470-6430 ; 0000-0002-7200-9894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-605X/aade9d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30177582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horakova, Jana</creatorcontrib><creatorcontrib>Mikes, Petr</creatorcontrib><creatorcontrib>Lukas, David</creatorcontrib><creatorcontrib>Saman, Ales</creatorcontrib><creatorcontrib>Jencova, Vera</creatorcontrib><creatorcontrib>Klapstova, Andrea</creatorcontrib><creatorcontrib>Svarcova, Tereza</creatorcontrib><creatorcontrib>Ackermann, Michal</creatorcontrib><creatorcontrib>Novotny, Vit</creatorcontrib><creatorcontrib>Kalab, Martin</creatorcontrib><creatorcontrib>Lonsky, Vladimir</creatorcontrib><creatorcontrib>Bartos, Martin</creatorcontrib><creatorcontrib>Rampichova, Michala</creatorcontrib><creatorcontrib>Litvinec, Andrej</creatorcontrib><creatorcontrib>Kubikova, Tereza</creatorcontrib><creatorcontrib>Tomasek, Petr</creatorcontrib><creatorcontrib>Tonar, Zbynek</creatorcontrib><title>Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery</title><title>Biomedical materials (Bristol)</title><addtitle>BMM</addtitle><addtitle>Biomed. Mater</addtitle><description>The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters of 5.58 0.10 m. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Aorta - pathology</subject><subject>Blood Vessel Prosthesis</subject><subject>caprolactone</subject><subject>Carotid Arteries - pathology</subject><subject>Cell Adhesion</subject><subject>Collagen - metabolism</subject><subject>copolymer poly</subject><subject>Dogs</subject><subject>electrospinning</subject><subject>Endothelial Cells</subject><subject>Fibroblasts - cytology</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>lactide-co</subject><subject>Mice</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Polyesters - chemistry</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>rabbit animal model</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Swine</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>vascular graft</subject><subject>Vascular Grafting</subject><subject>X-Ray Microtomography</subject><issn>1748-605X</issn><issn>1748-605X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFLHTEUhYNU1Kr7rkp2tdCpyWQyM1kWUSs8cGPBXbhJbtqRmZdpkhEe9Mebx1PpQlwlHL5zSD5CPnH2nbO-P-dd01ctk_fnAA6V2yNHr9GH_-6H5GNKD4xJJYU6IIeC8a6TfX1E_l2OaHMMaV7W9BGSXUaI9HcEnxP1YOJgIaOjPoaJzmHcnK2qEWweHFY2VLSyMMewTcIav9IlFRYSBWo2M6QyESLNf5BGMGbI1EIMpUshZoybE7LvYUx4-nwek19Xl3cXP6vV7fXNxY9VZSXvc4VKcV9721shpWctF4phLRpXy1pZ0UFtStZ0vrXQctVxZzz2tQFm0GHXimNyttstT_27YMp6GpLFcYQ1hiXpminViLZpeEHZDrXFSYro9RyHCeJGc6a3zvVWqt5K1TvnpfL5eX0xE7rXwovkAnzbAUOY9UNY4rp89r29L2_gZpo0F7rVrJWMKT07L54AAYabCA</recordid><startdate>20180921</startdate><enddate>20180921</enddate><creator>Horakova, Jana</creator><creator>Mikes, Petr</creator><creator>Lukas, David</creator><creator>Saman, Ales</creator><creator>Jencova, Vera</creator><creator>Klapstova, Andrea</creator><creator>Svarcova, Tereza</creator><creator>Ackermann, Michal</creator><creator>Novotny, Vit</creator><creator>Kalab, Martin</creator><creator>Lonsky, Vladimir</creator><creator>Bartos, Martin</creator><creator>Rampichova, Michala</creator><creator>Litvinec, Andrej</creator><creator>Kubikova, Tereza</creator><creator>Tomasek, Petr</creator><creator>Tonar, Zbynek</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2926-0570</orcidid><orcidid>https://orcid.org/0000-0003-2470-6430</orcidid><orcidid>https://orcid.org/0000-0002-7200-9894</orcidid></search><sort><creationdate>20180921</creationdate><title>Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery</title><author>Horakova, Jana ; Mikes, Petr ; Lukas, David ; Saman, Ales ; Jencova, Vera ; Klapstova, Andrea ; Svarcova, Tereza ; Ackermann, Michal ; Novotny, Vit ; Kalab, Martin ; Lonsky, Vladimir ; Bartos, Martin ; Rampichova, Michala ; Litvinec, Andrej ; Kubikova, Tereza ; Tomasek, Petr ; Tonar, Zbynek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-e991f2fc8c355f061390e234d2529c37a2b61347f6ca61971dbfe82ba0bede763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Aorta - pathology</topic><topic>Blood Vessel Prosthesis</topic><topic>caprolactone</topic><topic>Carotid Arteries - pathology</topic><topic>Cell Adhesion</topic><topic>Collagen - metabolism</topic><topic>copolymer poly</topic><topic>Dogs</topic><topic>electrospinning</topic><topic>Endothelial Cells</topic><topic>Fibroblasts - cytology</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>lactide-co</topic><topic>Mice</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Polyesters - chemistry</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>rabbit animal model</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Swine</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>vascular graft</topic><topic>Vascular Grafting</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horakova, Jana</creatorcontrib><creatorcontrib>Mikes, Petr</creatorcontrib><creatorcontrib>Lukas, David</creatorcontrib><creatorcontrib>Saman, Ales</creatorcontrib><creatorcontrib>Jencova, Vera</creatorcontrib><creatorcontrib>Klapstova, Andrea</creatorcontrib><creatorcontrib>Svarcova, Tereza</creatorcontrib><creatorcontrib>Ackermann, Michal</creatorcontrib><creatorcontrib>Novotny, Vit</creatorcontrib><creatorcontrib>Kalab, Martin</creatorcontrib><creatorcontrib>Lonsky, Vladimir</creatorcontrib><creatorcontrib>Bartos, Martin</creatorcontrib><creatorcontrib>Rampichova, Michala</creatorcontrib><creatorcontrib>Litvinec, Andrej</creatorcontrib><creatorcontrib>Kubikova, Tereza</creatorcontrib><creatorcontrib>Tomasek, Petr</creatorcontrib><creatorcontrib>Tonar, Zbynek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical materials (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horakova, Jana</au><au>Mikes, Petr</au><au>Lukas, David</au><au>Saman, Ales</au><au>Jencova, Vera</au><au>Klapstova, Andrea</au><au>Svarcova, Tereza</au><au>Ackermann, Michal</au><au>Novotny, Vit</au><au>Kalab, Martin</au><au>Lonsky, Vladimir</au><au>Bartos, Martin</au><au>Rampichova, Michala</au><au>Litvinec, Andrej</au><au>Kubikova, Tereza</au><au>Tomasek, Petr</au><au>Tonar, Zbynek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery</atitle><jtitle>Biomedical materials (Bristol)</jtitle><stitle>BMM</stitle><addtitle>Biomed. Mater</addtitle><date>2018-09-21</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>065009</spage><epage>065009</epage><pages>065009-065009</pages><issn>1748-605X</issn><eissn>1748-605X</eissn><coden>BMBUCS</coden><abstract>The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters of 5.58 0.10 m. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30177582</pmid><doi>10.1088/1748-605X/aade9d</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2926-0570</orcidid><orcidid>https://orcid.org/0000-0003-2470-6430</orcidid><orcidid>https://orcid.org/0000-0002-7200-9894</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-605X
ispartof Biomedical materials (Bristol), 2018-09, Vol.13 (6), p.065009-065009
issn 1748-605X
1748-605X
language eng
recordid cdi_crossref_primary_10_1088_1748_605X_aade9d
source Institute of Physics Journals; MEDLINE
subjects 3T3 Cells
Animals
Aorta - pathology
Blood Vessel Prosthesis
caprolactone
Carotid Arteries - pathology
Cell Adhesion
Collagen - metabolism
copolymer poly
Dogs
electrospinning
Endothelial Cells
Fibroblasts - cytology
Human Umbilical Vein Endothelial Cells
Humans
Imaging, Three-Dimensional
lactide-co
Mice
Myocytes, Smooth Muscle - cytology
Polyesters - chemistry
Polymers - chemistry
Porosity
rabbit animal model
Rabbits
Rats
Regeneration
Swine
Tissue Engineering - methods
Tissue Scaffolds
vascular graft
Vascular Grafting
X-Ray Microtomography
title Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20vascular%20grafts%20fabricated%20from%20poly(L-lactide-co-%20-caprolactone)%20used%20as%20a%20bypass%20for%20the%20rabbit%20carotid%20artery&rft.jtitle=Biomedical%20materials%20(Bristol)&rft.au=Horakova,%20Jana&rft.date=2018-09-21&rft.volume=13&rft.issue=6&rft.spage=065009&rft.epage=065009&rft.pages=065009-065009&rft.issn=1748-605X&rft.eissn=1748-605X&rft.coden=BMBUCS&rft_id=info:doi/10.1088/1748-605X/aade9d&rft_dat=%3Cproquest_cross%3E2099436441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099436441&rft_id=info:pmid/30177582&rfr_iscdi=true