Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery
The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters...
Gespeichert in:
Veröffentlicht in: | Biomedical materials (Bristol) 2018-09, Vol.13 (6), p.065009-065009 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 065009 |
---|---|
container_issue | 6 |
container_start_page | 065009 |
container_title | Biomedical materials (Bristol) |
container_volume | 13 |
creator | Horakova, Jana Mikes, Petr Lukas, David Saman, Ales Jencova, Vera Klapstova, Andrea Svarcova, Tereza Ackermann, Michal Novotny, Vit Kalab, Martin Lonsky, Vladimir Bartos, Martin Rampichova, Michala Litvinec, Andrej Kubikova, Tereza Tomasek, Petr Tonar, Zbynek |
description | The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters of 5.58 0.10 m. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer. |
doi_str_mv | 10.1088/1748-605X/aade9d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_605X_aade9d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099436441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-e991f2fc8c355f061390e234d2529c37a2b61347f6ca61971dbfe82ba0bede763</originalsourceid><addsrcrecordid>eNp9kEFLHTEUhYNU1Kr7rkp2tdCpyWQyM1kWUSs8cGPBXbhJbtqRmZdpkhEe9Mebx1PpQlwlHL5zSD5CPnH2nbO-P-dd01ctk_fnAA6V2yNHr9GH_-6H5GNKD4xJJYU6IIeC8a6TfX1E_l2OaHMMaV7W9BGSXUaI9HcEnxP1YOJgIaOjPoaJzmHcnK2qEWweHFY2VLSyMMewTcIav9IlFRYSBWo2M6QyESLNf5BGMGbI1EIMpUshZoybE7LvYUx4-nwek19Xl3cXP6vV7fXNxY9VZSXvc4VKcV9721shpWctF4phLRpXy1pZ0UFtStZ0vrXQctVxZzz2tQFm0GHXimNyttstT_27YMp6GpLFcYQ1hiXpminViLZpeEHZDrXFSYro9RyHCeJGc6a3zvVWqt5K1TvnpfL5eX0xE7rXwovkAnzbAUOY9UNY4rp89r29L2_gZpo0F7rVrJWMKT07L54AAYabCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099436441</pqid></control><display><type>article</type><title>Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Horakova, Jana ; Mikes, Petr ; Lukas, David ; Saman, Ales ; Jencova, Vera ; Klapstova, Andrea ; Svarcova, Tereza ; Ackermann, Michal ; Novotny, Vit ; Kalab, Martin ; Lonsky, Vladimir ; Bartos, Martin ; Rampichova, Michala ; Litvinec, Andrej ; Kubikova, Tereza ; Tomasek, Petr ; Tonar, Zbynek</creator><creatorcontrib>Horakova, Jana ; Mikes, Petr ; Lukas, David ; Saman, Ales ; Jencova, Vera ; Klapstova, Andrea ; Svarcova, Tereza ; Ackermann, Michal ; Novotny, Vit ; Kalab, Martin ; Lonsky, Vladimir ; Bartos, Martin ; Rampichova, Michala ; Litvinec, Andrej ; Kubikova, Tereza ; Tomasek, Petr ; Tonar, Zbynek</creatorcontrib><description>The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters of 5.58 0.10 m. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.</description><identifier>ISSN: 1748-605X</identifier><identifier>EISSN: 1748-605X</identifier><identifier>DOI: 10.1088/1748-605X/aade9d</identifier><identifier>PMID: 30177582</identifier><identifier>CODEN: BMBUCS</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>3T3 Cells ; Animals ; Aorta - pathology ; Blood Vessel Prosthesis ; caprolactone ; Carotid Arteries - pathology ; Cell Adhesion ; Collagen - metabolism ; copolymer poly ; Dogs ; electrospinning ; Endothelial Cells ; Fibroblasts - cytology ; Human Umbilical Vein Endothelial Cells ; Humans ; Imaging, Three-Dimensional ; lactide-co ; Mice ; Myocytes, Smooth Muscle - cytology ; Polyesters - chemistry ; Polymers - chemistry ; Porosity ; rabbit animal model ; Rabbits ; Rats ; Regeneration ; Swine ; Tissue Engineering - methods ; Tissue Scaffolds ; vascular graft ; Vascular Grafting ; X-Ray Microtomography</subject><ispartof>Biomedical materials (Bristol), 2018-09, Vol.13 (6), p.065009-065009</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-e991f2fc8c355f061390e234d2529c37a2b61347f6ca61971dbfe82ba0bede763</citedby><cites>FETCH-LOGICAL-c518t-e991f2fc8c355f061390e234d2529c37a2b61347f6ca61971dbfe82ba0bede763</cites><orcidid>0000-0003-2926-0570 ; 0000-0003-2470-6430 ; 0000-0002-7200-9894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-605X/aade9d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30177582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horakova, Jana</creatorcontrib><creatorcontrib>Mikes, Petr</creatorcontrib><creatorcontrib>Lukas, David</creatorcontrib><creatorcontrib>Saman, Ales</creatorcontrib><creatorcontrib>Jencova, Vera</creatorcontrib><creatorcontrib>Klapstova, Andrea</creatorcontrib><creatorcontrib>Svarcova, Tereza</creatorcontrib><creatorcontrib>Ackermann, Michal</creatorcontrib><creatorcontrib>Novotny, Vit</creatorcontrib><creatorcontrib>Kalab, Martin</creatorcontrib><creatorcontrib>Lonsky, Vladimir</creatorcontrib><creatorcontrib>Bartos, Martin</creatorcontrib><creatorcontrib>Rampichova, Michala</creatorcontrib><creatorcontrib>Litvinec, Andrej</creatorcontrib><creatorcontrib>Kubikova, Tereza</creatorcontrib><creatorcontrib>Tomasek, Petr</creatorcontrib><creatorcontrib>Tonar, Zbynek</creatorcontrib><title>Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery</title><title>Biomedical materials (Bristol)</title><addtitle>BMM</addtitle><addtitle>Biomed. Mater</addtitle><description>The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters of 5.58 0.10 m. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Aorta - pathology</subject><subject>Blood Vessel Prosthesis</subject><subject>caprolactone</subject><subject>Carotid Arteries - pathology</subject><subject>Cell Adhesion</subject><subject>Collagen - metabolism</subject><subject>copolymer poly</subject><subject>Dogs</subject><subject>electrospinning</subject><subject>Endothelial Cells</subject><subject>Fibroblasts - cytology</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>lactide-co</subject><subject>Mice</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Polyesters - chemistry</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>rabbit animal model</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Swine</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>vascular graft</subject><subject>Vascular Grafting</subject><subject>X-Ray Microtomography</subject><issn>1748-605X</issn><issn>1748-605X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFLHTEUhYNU1Kr7rkp2tdCpyWQyM1kWUSs8cGPBXbhJbtqRmZdpkhEe9Mebx1PpQlwlHL5zSD5CPnH2nbO-P-dd01ctk_fnAA6V2yNHr9GH_-6H5GNKD4xJJYU6IIeC8a6TfX1E_l2OaHMMaV7W9BGSXUaI9HcEnxP1YOJgIaOjPoaJzmHcnK2qEWweHFY2VLSyMMewTcIav9IlFRYSBWo2M6QyESLNf5BGMGbI1EIMpUshZoybE7LvYUx4-nwek19Xl3cXP6vV7fXNxY9VZSXvc4VKcV9721shpWctF4phLRpXy1pZ0UFtStZ0vrXQctVxZzz2tQFm0GHXimNyttstT_27YMp6GpLFcYQ1hiXpminViLZpeEHZDrXFSYro9RyHCeJGc6a3zvVWqt5K1TvnpfL5eX0xE7rXwovkAnzbAUOY9UNY4rp89r29L2_gZpo0F7rVrJWMKT07L54AAYabCA</recordid><startdate>20180921</startdate><enddate>20180921</enddate><creator>Horakova, Jana</creator><creator>Mikes, Petr</creator><creator>Lukas, David</creator><creator>Saman, Ales</creator><creator>Jencova, Vera</creator><creator>Klapstova, Andrea</creator><creator>Svarcova, Tereza</creator><creator>Ackermann, Michal</creator><creator>Novotny, Vit</creator><creator>Kalab, Martin</creator><creator>Lonsky, Vladimir</creator><creator>Bartos, Martin</creator><creator>Rampichova, Michala</creator><creator>Litvinec, Andrej</creator><creator>Kubikova, Tereza</creator><creator>Tomasek, Petr</creator><creator>Tonar, Zbynek</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2926-0570</orcidid><orcidid>https://orcid.org/0000-0003-2470-6430</orcidid><orcidid>https://orcid.org/0000-0002-7200-9894</orcidid></search><sort><creationdate>20180921</creationdate><title>Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery</title><author>Horakova, Jana ; Mikes, Petr ; Lukas, David ; Saman, Ales ; Jencova, Vera ; Klapstova, Andrea ; Svarcova, Tereza ; Ackermann, Michal ; Novotny, Vit ; Kalab, Martin ; Lonsky, Vladimir ; Bartos, Martin ; Rampichova, Michala ; Litvinec, Andrej ; Kubikova, Tereza ; Tomasek, Petr ; Tonar, Zbynek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-e991f2fc8c355f061390e234d2529c37a2b61347f6ca61971dbfe82ba0bede763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Aorta - pathology</topic><topic>Blood Vessel Prosthesis</topic><topic>caprolactone</topic><topic>Carotid Arteries - pathology</topic><topic>Cell Adhesion</topic><topic>Collagen - metabolism</topic><topic>copolymer poly</topic><topic>Dogs</topic><topic>electrospinning</topic><topic>Endothelial Cells</topic><topic>Fibroblasts - cytology</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>lactide-co</topic><topic>Mice</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Polyesters - chemistry</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>rabbit animal model</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Swine</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>vascular graft</topic><topic>Vascular Grafting</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horakova, Jana</creatorcontrib><creatorcontrib>Mikes, Petr</creatorcontrib><creatorcontrib>Lukas, David</creatorcontrib><creatorcontrib>Saman, Ales</creatorcontrib><creatorcontrib>Jencova, Vera</creatorcontrib><creatorcontrib>Klapstova, Andrea</creatorcontrib><creatorcontrib>Svarcova, Tereza</creatorcontrib><creatorcontrib>Ackermann, Michal</creatorcontrib><creatorcontrib>Novotny, Vit</creatorcontrib><creatorcontrib>Kalab, Martin</creatorcontrib><creatorcontrib>Lonsky, Vladimir</creatorcontrib><creatorcontrib>Bartos, Martin</creatorcontrib><creatorcontrib>Rampichova, Michala</creatorcontrib><creatorcontrib>Litvinec, Andrej</creatorcontrib><creatorcontrib>Kubikova, Tereza</creatorcontrib><creatorcontrib>Tomasek, Petr</creatorcontrib><creatorcontrib>Tonar, Zbynek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical materials (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horakova, Jana</au><au>Mikes, Petr</au><au>Lukas, David</au><au>Saman, Ales</au><au>Jencova, Vera</au><au>Klapstova, Andrea</au><au>Svarcova, Tereza</au><au>Ackermann, Michal</au><au>Novotny, Vit</au><au>Kalab, Martin</au><au>Lonsky, Vladimir</au><au>Bartos, Martin</au><au>Rampichova, Michala</au><au>Litvinec, Andrej</au><au>Kubikova, Tereza</au><au>Tomasek, Petr</au><au>Tonar, Zbynek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery</atitle><jtitle>Biomedical materials (Bristol)</jtitle><stitle>BMM</stitle><addtitle>Biomed. Mater</addtitle><date>2018-09-21</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>065009</spage><epage>065009</epage><pages>065009-065009</pages><issn>1748-605X</issn><eissn>1748-605X</eissn><coden>BMBUCS</coden><abstract>The study involved the electrospinning of the copolymer poly(L-lactide-co- -caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 0.19 m and fiber diameters of 5.58 0.10 m. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30177582</pmid><doi>10.1088/1748-605X/aade9d</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2926-0570</orcidid><orcidid>https://orcid.org/0000-0003-2470-6430</orcidid><orcidid>https://orcid.org/0000-0002-7200-9894</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-605X |
ispartof | Biomedical materials (Bristol), 2018-09, Vol.13 (6), p.065009-065009 |
issn | 1748-605X 1748-605X |
language | eng |
recordid | cdi_crossref_primary_10_1088_1748_605X_aade9d |
source | Institute of Physics Journals; MEDLINE |
subjects | 3T3 Cells Animals Aorta - pathology Blood Vessel Prosthesis caprolactone Carotid Arteries - pathology Cell Adhesion Collagen - metabolism copolymer poly Dogs electrospinning Endothelial Cells Fibroblasts - cytology Human Umbilical Vein Endothelial Cells Humans Imaging, Three-Dimensional lactide-co Mice Myocytes, Smooth Muscle - cytology Polyesters - chemistry Polymers - chemistry Porosity rabbit animal model Rabbits Rats Regeneration Swine Tissue Engineering - methods Tissue Scaffolds vascular graft Vascular Grafting X-Ray Microtomography |
title | Electrospun vascular grafts fabricated from poly(L-lactide-co- -caprolactone) used as a bypass for the rabbit carotid artery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20vascular%20grafts%20fabricated%20from%20poly(L-lactide-co-%20-caprolactone)%20used%20as%20a%20bypass%20for%20the%20rabbit%20carotid%20artery&rft.jtitle=Biomedical%20materials%20(Bristol)&rft.au=Horakova,%20Jana&rft.date=2018-09-21&rft.volume=13&rft.issue=6&rft.spage=065009&rft.epage=065009&rft.pages=065009-065009&rft.issn=1748-605X&rft.eissn=1748-605X&rft.coden=BMBUCS&rft_id=info:doi/10.1088/1748-605X/aade9d&rft_dat=%3Cproquest_cross%3E2099436441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099436441&rft_id=info:pmid/30177582&rfr_iscdi=true |