Biomaterials for revascularization and immunomodulation after spinal cord injury

Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical materials (Bristol) 2018-04, Vol.13 (4), p.044105-044105
Hauptverfasser: Haggerty, Agnes E, Maldonado-Lasunción, Inés, Oudega, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 044105
container_issue 4
container_start_page 044105
container_title Biomedical materials (Bristol)
container_volume 13
creator Haggerty, Agnes E
Maldonado-Lasunción, Inés
Oudega, Martin
description Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord plays a crucial role in SCI and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier (BSCB) in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the BSCB, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, which has deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after SCI, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after SCI, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue.
doi_str_mv 10.1088/1748-605X/aaa9d8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_605X_aaa9d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990486811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-af11c4774c9d562d716fc0179a542b5537f019c113a0fa6338c097277222478e3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoTqd3T9KbHqxLmqRpjjr8BQM9KHgLWZpARtPUpBXmX29G5_Agnr6P73ve9_AAcIbgNYJVNUOMVHkJ6ftMSsnrag8c7U77v_YJOI5xBSHlFPNDMCk4ppxBcgRebq13stfByiZmxocs6E8Z1dDIYL9kb32bybbOrHND652v02M8mhTKYmdb2WTKh4S0qyGsT8CBSVX6dDun4O3-7nX-mC-eH57mN4tcUYT7XBqEFGGMKF7TsqgZKo2CiHFJSbGkFDMDEVcIYQmNLDGuFOSsYKwoCsIqjafgcuztgv8YdOyFs1HpppGt9kMUiHNIqrJKDVMAR1QFH2PQRnTBOhnWAkGx8Sg2osRGlBg9psj5tn1YOl3vAj_iEnA1AtZ3YuWHkDTE__ou_sCXzgmEBRGQEASp6GqDvwEgHop7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990486811</pqid></control><display><type>article</type><title>Biomaterials for revascularization and immunomodulation after spinal cord injury</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Haggerty, Agnes E ; Maldonado-Lasunción, Inés ; Oudega, Martin</creator><creatorcontrib>Haggerty, Agnes E ; Maldonado-Lasunción, Inés ; Oudega, Martin</creatorcontrib><description>Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord plays a crucial role in SCI and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier (BSCB) in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the BSCB, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, which has deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after SCI, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after SCI, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue.</description><identifier>ISSN: 1748-605X</identifier><identifier>EISSN: 1748-605X</identifier><identifier>DOI: 10.1088/1748-605X/aaa9d8</identifier><identifier>PMID: 29359704</identifier><identifier>CODEN: BMBUCS</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>angiogenesis ; Animals ; Axons - physiology ; Biocompatible Materials - chemistry ; bioengineering ; blood vessels ; Blood Vessels - pathology ; blood-spinal cord barrier ; Brain - pathology ; Cell Adhesion ; Drug Delivery Systems ; Extracellular Matrix - metabolism ; Humans ; Inflammation ; Ligands ; Macrophages - metabolism ; Materials Testing ; Microspheres ; Neovascularization, Physiologic ; Neurons - physiology ; Oxygen ; Phenotype ; Spinal Cord - anatomy &amp; histology ; Spinal Cord - pathology ; Spinal Cord Injuries - therapy ; spinal cord injury ; vascularization ; Wound Healing</subject><ispartof>Biomedical materials (Bristol), 2018-04, Vol.13 (4), p.044105-044105</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-af11c4774c9d562d716fc0179a542b5537f019c113a0fa6338c097277222478e3</citedby><cites>FETCH-LOGICAL-c513t-af11c4774c9d562d716fc0179a542b5537f019c113a0fa6338c097277222478e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-605X/aaa9d8/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29359704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haggerty, Agnes E</creatorcontrib><creatorcontrib>Maldonado-Lasunción, Inés</creatorcontrib><creatorcontrib>Oudega, Martin</creatorcontrib><title>Biomaterials for revascularization and immunomodulation after spinal cord injury</title><title>Biomedical materials (Bristol)</title><addtitle>BMM</addtitle><addtitle>Biomed. Mater</addtitle><description>Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord plays a crucial role in SCI and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier (BSCB) in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the BSCB, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, which has deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after SCI, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after SCI, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue.</description><subject>angiogenesis</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Biocompatible Materials - chemistry</subject><subject>bioengineering</subject><subject>blood vessels</subject><subject>Blood Vessels - pathology</subject><subject>blood-spinal cord barrier</subject><subject>Brain - pathology</subject><subject>Cell Adhesion</subject><subject>Drug Delivery Systems</subject><subject>Extracellular Matrix - metabolism</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Ligands</subject><subject>Macrophages - metabolism</subject><subject>Materials Testing</subject><subject>Microspheres</subject><subject>Neovascularization, Physiologic</subject><subject>Neurons - physiology</subject><subject>Oxygen</subject><subject>Phenotype</subject><subject>Spinal Cord - anatomy &amp; histology</subject><subject>Spinal Cord - pathology</subject><subject>Spinal Cord Injuries - therapy</subject><subject>spinal cord injury</subject><subject>vascularization</subject><subject>Wound Healing</subject><issn>1748-605X</issn><issn>1748-605X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAYhoMoTqd3T9KbHqxLmqRpjjr8BQM9KHgLWZpARtPUpBXmX29G5_Agnr6P73ve9_AAcIbgNYJVNUOMVHkJ6ftMSsnrag8c7U77v_YJOI5xBSHlFPNDMCk4ppxBcgRebq13stfByiZmxocs6E8Z1dDIYL9kb32bybbOrHND652v02M8mhTKYmdb2WTKh4S0qyGsT8CBSVX6dDun4O3-7nX-mC-eH57mN4tcUYT7XBqEFGGMKF7TsqgZKo2CiHFJSbGkFDMDEVcIYQmNLDGuFOSsYKwoCsIqjafgcuztgv8YdOyFs1HpppGt9kMUiHNIqrJKDVMAR1QFH2PQRnTBOhnWAkGx8Sg2osRGlBg9psj5tn1YOl3vAj_iEnA1AtZ3YuWHkDTE__ou_sCXzgmEBRGQEASp6GqDvwEgHop7</recordid><startdate>20180425</startdate><enddate>20180425</enddate><creator>Haggerty, Agnes E</creator><creator>Maldonado-Lasunción, Inés</creator><creator>Oudega, Martin</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180425</creationdate><title>Biomaterials for revascularization and immunomodulation after spinal cord injury</title><author>Haggerty, Agnes E ; Maldonado-Lasunción, Inés ; Oudega, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-af11c4774c9d562d716fc0179a542b5537f019c113a0fa6338c097277222478e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>angiogenesis</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Biocompatible Materials - chemistry</topic><topic>bioengineering</topic><topic>blood vessels</topic><topic>Blood Vessels - pathology</topic><topic>blood-spinal cord barrier</topic><topic>Brain - pathology</topic><topic>Cell Adhesion</topic><topic>Drug Delivery Systems</topic><topic>Extracellular Matrix - metabolism</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Ligands</topic><topic>Macrophages - metabolism</topic><topic>Materials Testing</topic><topic>Microspheres</topic><topic>Neovascularization, Physiologic</topic><topic>Neurons - physiology</topic><topic>Oxygen</topic><topic>Phenotype</topic><topic>Spinal Cord - anatomy &amp; histology</topic><topic>Spinal Cord - pathology</topic><topic>Spinal Cord Injuries - therapy</topic><topic>spinal cord injury</topic><topic>vascularization</topic><topic>Wound Healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haggerty, Agnes E</creatorcontrib><creatorcontrib>Maldonado-Lasunción, Inés</creatorcontrib><creatorcontrib>Oudega, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical materials (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haggerty, Agnes E</au><au>Maldonado-Lasunción, Inés</au><au>Oudega, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomaterials for revascularization and immunomodulation after spinal cord injury</atitle><jtitle>Biomedical materials (Bristol)</jtitle><stitle>BMM</stitle><addtitle>Biomed. Mater</addtitle><date>2018-04-25</date><risdate>2018</risdate><volume>13</volume><issue>4</issue><spage>044105</spage><epage>044105</epage><pages>044105-044105</pages><issn>1748-605X</issn><eissn>1748-605X</eissn><coden>BMBUCS</coden><abstract>Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord plays a crucial role in SCI and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier (BSCB) in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the BSCB, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, which has deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after SCI, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after SCI, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29359704</pmid><doi>10.1088/1748-605X/aaa9d8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-605X
ispartof Biomedical materials (Bristol), 2018-04, Vol.13 (4), p.044105-044105
issn 1748-605X
1748-605X
language eng
recordid cdi_crossref_primary_10_1088_1748_605X_aaa9d8
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects angiogenesis
Animals
Axons - physiology
Biocompatible Materials - chemistry
bioengineering
blood vessels
Blood Vessels - pathology
blood-spinal cord barrier
Brain - pathology
Cell Adhesion
Drug Delivery Systems
Extracellular Matrix - metabolism
Humans
Inflammation
Ligands
Macrophages - metabolism
Materials Testing
Microspheres
Neovascularization, Physiologic
Neurons - physiology
Oxygen
Phenotype
Spinal Cord - anatomy & histology
Spinal Cord - pathology
Spinal Cord Injuries - therapy
spinal cord injury
vascularization
Wound Healing
title Biomaterials for revascularization and immunomodulation after spinal cord injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomaterials%20for%20revascularization%20and%20immunomodulation%20after%20spinal%20cord%20injury&rft.jtitle=Biomedical%20materials%20(Bristol)&rft.au=Haggerty,%20Agnes%20E&rft.date=2018-04-25&rft.volume=13&rft.issue=4&rft.spage=044105&rft.epage=044105&rft.pages=044105-044105&rft.issn=1748-605X&rft.eissn=1748-605X&rft.coden=BMBUCS&rft_id=info:doi/10.1088/1748-605X/aaa9d8&rft_dat=%3Cproquest_cross%3E1990486811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990486811&rft_id=info:pmid/29359704&rfr_iscdi=true