Biomaterials for revascularization and immunomodulation after spinal cord injury
Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord p...
Gespeichert in:
Veröffentlicht in: | Biomedical materials (Bristol) 2018-04, Vol.13 (4), p.044105-044105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 044105 |
---|---|
container_issue | 4 |
container_start_page | 044105 |
container_title | Biomedical materials (Bristol) |
container_volume | 13 |
creator | Haggerty, Agnes E Maldonado-Lasunción, Inés Oudega, Martin |
description | Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord plays a crucial role in SCI and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier (BSCB) in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the BSCB, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, which has deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after SCI, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after SCI, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue. |
doi_str_mv | 10.1088/1748-605X/aaa9d8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1748_605X_aaa9d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990486811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-af11c4774c9d562d716fc0179a542b5537f019c113a0fa6338c097277222478e3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoTqd3T9KbHqxLmqRpjjr8BQM9KHgLWZpARtPUpBXmX29G5_Agnr6P73ve9_AAcIbgNYJVNUOMVHkJ6ftMSsnrag8c7U77v_YJOI5xBSHlFPNDMCk4ppxBcgRebq13stfByiZmxocs6E8Z1dDIYL9kb32bybbOrHND652v02M8mhTKYmdb2WTKh4S0qyGsT8CBSVX6dDun4O3-7nX-mC-eH57mN4tcUYT7XBqEFGGMKF7TsqgZKo2CiHFJSbGkFDMDEVcIYQmNLDGuFOSsYKwoCsIqjafgcuztgv8YdOyFs1HpppGt9kMUiHNIqrJKDVMAR1QFH2PQRnTBOhnWAkGx8Sg2osRGlBg9psj5tn1YOl3vAj_iEnA1AtZ3YuWHkDTE__ou_sCXzgmEBRGQEASp6GqDvwEgHop7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990486811</pqid></control><display><type>article</type><title>Biomaterials for revascularization and immunomodulation after spinal cord injury</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Haggerty, Agnes E ; Maldonado-Lasunción, Inés ; Oudega, Martin</creator><creatorcontrib>Haggerty, Agnes E ; Maldonado-Lasunción, Inés ; Oudega, Martin</creatorcontrib><description>Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord plays a crucial role in SCI and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier (BSCB) in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the BSCB, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, which has deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after SCI, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after SCI, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue.</description><identifier>ISSN: 1748-605X</identifier><identifier>EISSN: 1748-605X</identifier><identifier>DOI: 10.1088/1748-605X/aaa9d8</identifier><identifier>PMID: 29359704</identifier><identifier>CODEN: BMBUCS</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>angiogenesis ; Animals ; Axons - physiology ; Biocompatible Materials - chemistry ; bioengineering ; blood vessels ; Blood Vessels - pathology ; blood-spinal cord barrier ; Brain - pathology ; Cell Adhesion ; Drug Delivery Systems ; Extracellular Matrix - metabolism ; Humans ; Inflammation ; Ligands ; Macrophages - metabolism ; Materials Testing ; Microspheres ; Neovascularization, Physiologic ; Neurons - physiology ; Oxygen ; Phenotype ; Spinal Cord - anatomy & histology ; Spinal Cord - pathology ; Spinal Cord Injuries - therapy ; spinal cord injury ; vascularization ; Wound Healing</subject><ispartof>Biomedical materials (Bristol), 2018-04, Vol.13 (4), p.044105-044105</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-af11c4774c9d562d716fc0179a542b5537f019c113a0fa6338c097277222478e3</citedby><cites>FETCH-LOGICAL-c513t-af11c4774c9d562d716fc0179a542b5537f019c113a0fa6338c097277222478e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-605X/aaa9d8/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29359704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haggerty, Agnes E</creatorcontrib><creatorcontrib>Maldonado-Lasunción, Inés</creatorcontrib><creatorcontrib>Oudega, Martin</creatorcontrib><title>Biomaterials for revascularization and immunomodulation after spinal cord injury</title><title>Biomedical materials (Bristol)</title><addtitle>BMM</addtitle><addtitle>Biomed. Mater</addtitle><description>Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord plays a crucial role in SCI and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier (BSCB) in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the BSCB, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, which has deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after SCI, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after SCI, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue.</description><subject>angiogenesis</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Biocompatible Materials - chemistry</subject><subject>bioengineering</subject><subject>blood vessels</subject><subject>Blood Vessels - pathology</subject><subject>blood-spinal cord barrier</subject><subject>Brain - pathology</subject><subject>Cell Adhesion</subject><subject>Drug Delivery Systems</subject><subject>Extracellular Matrix - metabolism</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Ligands</subject><subject>Macrophages - metabolism</subject><subject>Materials Testing</subject><subject>Microspheres</subject><subject>Neovascularization, Physiologic</subject><subject>Neurons - physiology</subject><subject>Oxygen</subject><subject>Phenotype</subject><subject>Spinal Cord - anatomy & histology</subject><subject>Spinal Cord - pathology</subject><subject>Spinal Cord Injuries - therapy</subject><subject>spinal cord injury</subject><subject>vascularization</subject><subject>Wound Healing</subject><issn>1748-605X</issn><issn>1748-605X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAYhoMoTqd3T9KbHqxLmqRpjjr8BQM9KHgLWZpARtPUpBXmX29G5_Agnr6P73ve9_AAcIbgNYJVNUOMVHkJ6ftMSsnrag8c7U77v_YJOI5xBSHlFPNDMCk4ppxBcgRebq13stfByiZmxocs6E8Z1dDIYL9kb32bybbOrHND652v02M8mhTKYmdb2WTKh4S0qyGsT8CBSVX6dDun4O3-7nX-mC-eH57mN4tcUYT7XBqEFGGMKF7TsqgZKo2CiHFJSbGkFDMDEVcIYQmNLDGuFOSsYKwoCsIqjafgcuztgv8YdOyFs1HpppGt9kMUiHNIqrJKDVMAR1QFH2PQRnTBOhnWAkGx8Sg2osRGlBg9psj5tn1YOl3vAj_iEnA1AtZ3YuWHkDTE__ou_sCXzgmEBRGQEASp6GqDvwEgHop7</recordid><startdate>20180425</startdate><enddate>20180425</enddate><creator>Haggerty, Agnes E</creator><creator>Maldonado-Lasunción, Inés</creator><creator>Oudega, Martin</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180425</creationdate><title>Biomaterials for revascularization and immunomodulation after spinal cord injury</title><author>Haggerty, Agnes E ; Maldonado-Lasunción, Inés ; Oudega, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-af11c4774c9d562d716fc0179a542b5537f019c113a0fa6338c097277222478e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>angiogenesis</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Biocompatible Materials - chemistry</topic><topic>bioengineering</topic><topic>blood vessels</topic><topic>Blood Vessels - pathology</topic><topic>blood-spinal cord barrier</topic><topic>Brain - pathology</topic><topic>Cell Adhesion</topic><topic>Drug Delivery Systems</topic><topic>Extracellular Matrix - metabolism</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Ligands</topic><topic>Macrophages - metabolism</topic><topic>Materials Testing</topic><topic>Microspheres</topic><topic>Neovascularization, Physiologic</topic><topic>Neurons - physiology</topic><topic>Oxygen</topic><topic>Phenotype</topic><topic>Spinal Cord - anatomy & histology</topic><topic>Spinal Cord - pathology</topic><topic>Spinal Cord Injuries - therapy</topic><topic>spinal cord injury</topic><topic>vascularization</topic><topic>Wound Healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haggerty, Agnes E</creatorcontrib><creatorcontrib>Maldonado-Lasunción, Inés</creatorcontrib><creatorcontrib>Oudega, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical materials (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haggerty, Agnes E</au><au>Maldonado-Lasunción, Inés</au><au>Oudega, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomaterials for revascularization and immunomodulation after spinal cord injury</atitle><jtitle>Biomedical materials (Bristol)</jtitle><stitle>BMM</stitle><addtitle>Biomed. Mater</addtitle><date>2018-04-25</date><risdate>2018</risdate><volume>13</volume><issue>4</issue><spage>044105</spage><epage>044105</epage><pages>044105-044105</pages><issn>1748-605X</issn><eissn>1748-605X</eissn><coden>BMBUCS</coden><abstract>Spinal cord injury (SCI) causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after SCI. The vasculature of the spinal cord plays a crucial role in SCI and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier (BSCB) in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the BSCB, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, which has deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after SCI, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after SCI, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29359704</pmid><doi>10.1088/1748-605X/aaa9d8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-605X |
ispartof | Biomedical materials (Bristol), 2018-04, Vol.13 (4), p.044105-044105 |
issn | 1748-605X 1748-605X |
language | eng |
recordid | cdi_crossref_primary_10_1088_1748_605X_aaa9d8 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | angiogenesis Animals Axons - physiology Biocompatible Materials - chemistry bioengineering blood vessels Blood Vessels - pathology blood-spinal cord barrier Brain - pathology Cell Adhesion Drug Delivery Systems Extracellular Matrix - metabolism Humans Inflammation Ligands Macrophages - metabolism Materials Testing Microspheres Neovascularization, Physiologic Neurons - physiology Oxygen Phenotype Spinal Cord - anatomy & histology Spinal Cord - pathology Spinal Cord Injuries - therapy spinal cord injury vascularization Wound Healing |
title | Biomaterials for revascularization and immunomodulation after spinal cord injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomaterials%20for%20revascularization%20and%20immunomodulation%20after%20spinal%20cord%20injury&rft.jtitle=Biomedical%20materials%20(Bristol)&rft.au=Haggerty,%20Agnes%20E&rft.date=2018-04-25&rft.volume=13&rft.issue=4&rft.spage=044105&rft.epage=044105&rft.pages=044105-044105&rft.issn=1748-605X&rft.eissn=1748-605X&rft.coden=BMBUCS&rft_id=info:doi/10.1088/1748-605X/aaa9d8&rft_dat=%3Cproquest_cross%3E1990486811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990486811&rft_id=info:pmid/29359704&rfr_iscdi=true |