Universal scaling relations for growth phenomena
The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a...
Gespeichert in:
Veröffentlicht in: | Journal of statistical mechanics 2024-01, Vol.2024 (1), p.13209 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 13209 |
container_title | Journal of statistical mechanics |
container_volume | 2024 |
creator | Rodrigues, Evandro A Mozo Luis, Edwin E de Assis, Thiago A Oliveira, Fernando A |
description | The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a new scaling independent of the size, substrate dimension
d
, and scaling exponents. We use the properties of lattice growth models in the Kardar–Parisi–Zhang and Villain–Lai–Das Sarma universality classes for
1
⩽
d
⩽
3
to support our claims. |
doi_str_mv | 10.1088/1742-5468/ad1d57 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_5468_ad1d57</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jstatad1d57</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-43c462a0ef0aa8d9189eb6512a1640aca877311d5ada4d65eb40840bfcd2093d3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePfaudScfbdOjLLoKC17cc5g2yW5LNylJVfzvbamIB_E0w_De8H6PkGsKdxSkXNFCsDQTuVyhpjorTsji53T6az8nFzG2AJyBkAsCO9e8mxCxS2KNXeP2STAdDo13MbE-JPvgP4ZD0h-M80fj8JKcWeyiufqeS7J7fHhdP6Xbl83z-n6b1pzmQyp4LXKGYCwgSl1SWZoqzyhDmgvAGmVRcDoGRY1C55mpBEgBla01g5JrviQw_62DjzEYq_rQHDF8KgpqIlYTkpqQ1Ew8Wm5nS-N71fq34MaA_8lv_pC3ccBBMWBCUQV0rKlUvbb8C9-BZds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universal scaling relations for growth phenomena</title><source>Institute of Physics Journals</source><creator>Rodrigues, Evandro A ; Mozo Luis, Edwin E ; de Assis, Thiago A ; Oliveira, Fernando A</creator><creatorcontrib>Rodrigues, Evandro A ; Mozo Luis, Edwin E ; de Assis, Thiago A ; Oliveira, Fernando A</creatorcontrib><description>The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a new scaling independent of the size, substrate dimension
d
, and scaling exponents. We use the properties of lattice growth models in the Kardar–Parisi–Zhang and Villain–Lai–Das Sarma universality classes for
1
⩽
d
⩽
3
to support our claims.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/ad1d57</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>finite-size scaling ; growth processes ; kinetic roughening ; self-affine roughness</subject><ispartof>Journal of statistical mechanics, 2024-01, Vol.2024 (1), p.13209</ispartof><rights>2024 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-43c462a0ef0aa8d9189eb6512a1640aca877311d5ada4d65eb40840bfcd2093d3</citedby><cites>FETCH-LOGICAL-c316t-43c462a0ef0aa8d9189eb6512a1640aca877311d5ada4d65eb40840bfcd2093d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/ad1d57/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Rodrigues, Evandro A</creatorcontrib><creatorcontrib>Mozo Luis, Edwin E</creatorcontrib><creatorcontrib>de Assis, Thiago A</creatorcontrib><creatorcontrib>Oliveira, Fernando A</creatorcontrib><title>Universal scaling relations for growth phenomena</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a new scaling independent of the size, substrate dimension
d
, and scaling exponents. We use the properties of lattice growth models in the Kardar–Parisi–Zhang and Villain–Lai–Das Sarma universality classes for
1
⩽
d
⩽
3
to support our claims.</description><subject>finite-size scaling</subject><subject>growth processes</subject><subject>kinetic roughening</subject><subject>self-affine roughness</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePfaudScfbdOjLLoKC17cc5g2yW5LNylJVfzvbamIB_E0w_De8H6PkGsKdxSkXNFCsDQTuVyhpjorTsji53T6az8nFzG2AJyBkAsCO9e8mxCxS2KNXeP2STAdDo13MbE-JPvgP4ZD0h-M80fj8JKcWeyiufqeS7J7fHhdP6Xbl83z-n6b1pzmQyp4LXKGYCwgSl1SWZoqzyhDmgvAGmVRcDoGRY1C55mpBEgBla01g5JrviQw_62DjzEYq_rQHDF8KgpqIlYTkpqQ1Ew8Wm5nS-N71fq34MaA_8lv_pC3ccBBMWBCUQV0rKlUvbb8C9-BZds</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Rodrigues, Evandro A</creator><creator>Mozo Luis, Edwin E</creator><creator>de Assis, Thiago A</creator><creator>Oliveira, Fernando A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>Universal scaling relations for growth phenomena</title><author>Rodrigues, Evandro A ; Mozo Luis, Edwin E ; de Assis, Thiago A ; Oliveira, Fernando A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-43c462a0ef0aa8d9189eb6512a1640aca877311d5ada4d65eb40840bfcd2093d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>finite-size scaling</topic><topic>growth processes</topic><topic>kinetic roughening</topic><topic>self-affine roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Evandro A</creatorcontrib><creatorcontrib>Mozo Luis, Edwin E</creatorcontrib><creatorcontrib>de Assis, Thiago A</creatorcontrib><creatorcontrib>Oliveira, Fernando A</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Evandro A</au><au>Mozo Luis, Edwin E</au><au>de Assis, Thiago A</au><au>Oliveira, Fernando A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal scaling relations for growth phenomena</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><spage>13209</spage><pages>13209-</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><abstract>The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a new scaling independent of the size, substrate dimension
d
, and scaling exponents. We use the properties of lattice growth models in the Kardar–Parisi–Zhang and Villain–Lai–Das Sarma universality classes for
1
⩽
d
⩽
3
to support our claims.</abstract><pub>IOP Publishing</pub><doi>10.1088/1742-5468/ad1d57</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5468 |
ispartof | Journal of statistical mechanics, 2024-01, Vol.2024 (1), p.13209 |
issn | 1742-5468 1742-5468 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1742_5468_ad1d57 |
source | Institute of Physics Journals |
subjects | finite-size scaling growth processes kinetic roughening self-affine roughness |
title | Universal scaling relations for growth phenomena |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20scaling%20relations%20for%20growth%20phenomena&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Rodrigues,%20Evandro%20A&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.spage=13209&rft.pages=13209-&rft.issn=1742-5468&rft.eissn=1742-5468&rft_id=info:doi/10.1088/1742-5468/ad1d57&rft_dat=%3Ciop_cross%3Ejstatad1d57%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |