Universal scaling relations for growth phenomena

The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2024-01, Vol.2024 (1), p.13209
Hauptverfasser: Rodrigues, Evandro A, Mozo Luis, Edwin E, de Assis, Thiago A, Oliveira, Fernando A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 13209
container_title Journal of statistical mechanics
container_volume 2024
creator Rodrigues, Evandro A
Mozo Luis, Edwin E
de Assis, Thiago A
Oliveira, Fernando A
description The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a new scaling independent of the size, substrate dimension d , and scaling exponents. We use the properties of lattice growth models in the Kardar–Parisi–Zhang and Villain–Lai–Das Sarma universality classes for 1 ⩽ d ⩽ 3 to support our claims.
doi_str_mv 10.1088/1742-5468/ad1d57
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_5468_ad1d57</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jstatad1d57</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-43c462a0ef0aa8d9189eb6512a1640aca877311d5ada4d65eb40840bfcd2093d3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePfaudScfbdOjLLoKC17cc5g2yW5LNylJVfzvbamIB_E0w_De8H6PkGsKdxSkXNFCsDQTuVyhpjorTsji53T6az8nFzG2AJyBkAsCO9e8mxCxS2KNXeP2STAdDo13MbE-JPvgP4ZD0h-M80fj8JKcWeyiufqeS7J7fHhdP6Xbl83z-n6b1pzmQyp4LXKGYCwgSl1SWZoqzyhDmgvAGmVRcDoGRY1C55mpBEgBla01g5JrviQw_62DjzEYq_rQHDF8KgpqIlYTkpqQ1Ew8Wm5nS-N71fq34MaA_8lv_pC3ccBBMWBCUQV0rKlUvbb8C9-BZds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universal scaling relations for growth phenomena</title><source>Institute of Physics Journals</source><creator>Rodrigues, Evandro A ; Mozo Luis, Edwin E ; de Assis, Thiago A ; Oliveira, Fernando A</creator><creatorcontrib>Rodrigues, Evandro A ; Mozo Luis, Edwin E ; de Assis, Thiago A ; Oliveira, Fernando A</creatorcontrib><description>The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a new scaling independent of the size, substrate dimension d , and scaling exponents. We use the properties of lattice growth models in the Kardar–Parisi–Zhang and Villain–Lai–Das Sarma universality classes for 1 ⩽ d ⩽ 3 to support our claims.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/ad1d57</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>finite-size scaling ; growth processes ; kinetic roughening ; self-affine roughness</subject><ispartof>Journal of statistical mechanics, 2024-01, Vol.2024 (1), p.13209</ispartof><rights>2024 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-43c462a0ef0aa8d9189eb6512a1640aca877311d5ada4d65eb40840bfcd2093d3</citedby><cites>FETCH-LOGICAL-c316t-43c462a0ef0aa8d9189eb6512a1640aca877311d5ada4d65eb40840bfcd2093d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/ad1d57/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Rodrigues, Evandro A</creatorcontrib><creatorcontrib>Mozo Luis, Edwin E</creatorcontrib><creatorcontrib>de Assis, Thiago A</creatorcontrib><creatorcontrib>Oliveira, Fernando A</creatorcontrib><title>Universal scaling relations for growth phenomena</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a new scaling independent of the size, substrate dimension d , and scaling exponents. We use the properties of lattice growth models in the Kardar–Parisi–Zhang and Villain–Lai–Das Sarma universality classes for 1 ⩽ d ⩽ 3 to support our claims.</description><subject>finite-size scaling</subject><subject>growth processes</subject><subject>kinetic roughening</subject><subject>self-affine roughness</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePfaudScfbdOjLLoKC17cc5g2yW5LNylJVfzvbamIB_E0w_De8H6PkGsKdxSkXNFCsDQTuVyhpjorTsji53T6az8nFzG2AJyBkAsCO9e8mxCxS2KNXeP2STAdDo13MbE-JPvgP4ZD0h-M80fj8JKcWeyiufqeS7J7fHhdP6Xbl83z-n6b1pzmQyp4LXKGYCwgSl1SWZoqzyhDmgvAGmVRcDoGRY1C55mpBEgBla01g5JrviQw_62DjzEYq_rQHDF8KgpqIlYTkpqQ1Ew8Wm5nS-N71fq34MaA_8lv_pC3ccBBMWBCUQV0rKlUvbb8C9-BZds</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Rodrigues, Evandro A</creator><creator>Mozo Luis, Edwin E</creator><creator>de Assis, Thiago A</creator><creator>Oliveira, Fernando A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>Universal scaling relations for growth phenomena</title><author>Rodrigues, Evandro A ; Mozo Luis, Edwin E ; de Assis, Thiago A ; Oliveira, Fernando A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-43c462a0ef0aa8d9189eb6512a1640aca877311d5ada4d65eb40840bfcd2093d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>finite-size scaling</topic><topic>growth processes</topic><topic>kinetic roughening</topic><topic>self-affine roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Evandro A</creatorcontrib><creatorcontrib>Mozo Luis, Edwin E</creatorcontrib><creatorcontrib>de Assis, Thiago A</creatorcontrib><creatorcontrib>Oliveira, Fernando A</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Evandro A</au><au>Mozo Luis, Edwin E</au><au>de Assis, Thiago A</au><au>Oliveira, Fernando A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal scaling relations for growth phenomena</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><spage>13209</spage><pages>13209-</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><abstract>The Family–Vicsek (FV) relation is a seminal universal relation obtained for the global roughness at the interface of two media in the growth process. In this work, we revisit the scaling analysis and, through both analytical and computational means, show that the FV relation can be generalized to a new scaling independent of the size, substrate dimension d , and scaling exponents. We use the properties of lattice growth models in the Kardar–Parisi–Zhang and Villain–Lai–Das Sarma universality classes for 1 ⩽ d ⩽ 3 to support our claims.</abstract><pub>IOP Publishing</pub><doi>10.1088/1742-5468/ad1d57</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2024-01, Vol.2024 (1), p.13209
issn 1742-5468
1742-5468
language eng
recordid cdi_crossref_primary_10_1088_1742_5468_ad1d57
source Institute of Physics Journals
subjects finite-size scaling
growth processes
kinetic roughening
self-affine roughness
title Universal scaling relations for growth phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20scaling%20relations%20for%20growth%20phenomena&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Rodrigues,%20Evandro%20A&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.spage=13209&rft.pages=13209-&rft.issn=1742-5468&rft.eissn=1742-5468&rft_id=info:doi/10.1088/1742-5468/ad1d57&rft_dat=%3Ciop_cross%3Ejstatad1d57%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true