Solitons and normal random matrices

We discuss a general relation between the solitons and statistical mechanics and show that the partition function of the normal random matrix model can be obtained from the multi-soliton solutions of the two-dimensional Toda lattice hierarchy in a special limit.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2023-10, Vol.2023 (10), p.103202
Hauptverfasser: Loutsenko, I M, Spiridonov, V P, Yermolayeva, O V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 103202
container_title Journal of statistical mechanics
container_volume 2023
creator Loutsenko, I M
Spiridonov, V P
Yermolayeva, O V
description We discuss a general relation between the solitons and statistical mechanics and show that the partition function of the normal random matrix model can be obtained from the multi-soliton solutions of the two-dimensional Toda lattice hierarchy in a special limit.
doi_str_mv 10.1088/1742-5468/ad002f
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_5468_ad002f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jstatad002f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-d4b934be28ab0e0f5a2372783a786c80cf60af3852b1ae2342441ba22bcd283b3</originalsourceid><addsrcrecordid>eNp1j0FLxDAQhYMouK7ePRa8WncySZt4lEVXYcGDeg6TNIEubbMk9eC_t6UiXjzNY3jv8T7GrjnccdB6w5XEspK13lADgOGErX5fp3_0ObvI-QAgEKResZu32LVjHHJBQ1MMMfXUFWnSsS96GlPrfL5kZ4G67K9-7pp9PD2-b5_L_evuZfuwLx2qaiwbae-FtB41WfAQKkKhUGlBStdOgws1UBC6QsvJo5AoJbeEaF2DWlixZrD0uhRzTj6YY2p7Sl-Gg5khzUxhZgqzQE6R2yXSxqM5xM80TAP_t38DHGVR1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solitons and normal random matrices</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Loutsenko, I M ; Spiridonov, V P ; Yermolayeva, O V</creator><creatorcontrib>Loutsenko, I M ; Spiridonov, V P ; Yermolayeva, O V</creatorcontrib><description>We discuss a general relation between the solitons and statistical mechanics and show that the partition function of the normal random matrix model can be obtained from the multi-soliton solutions of the two-dimensional Toda lattice hierarchy in a special limit.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/ad002f</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>classical integrability ; matrix models ; solvable lattice models</subject><ispartof>Journal of statistical mechanics, 2023-10, Vol.2023 (10), p.103202</ispartof><rights>2023 The Author(s). Published on behalf of SISSA Medialab srl by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-d4b934be28ab0e0f5a2372783a786c80cf60af3852b1ae2342441ba22bcd283b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/ad002f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,27928,27929,53850,53897</link.rule.ids></links><search><creatorcontrib>Loutsenko, I M</creatorcontrib><creatorcontrib>Spiridonov, V P</creatorcontrib><creatorcontrib>Yermolayeva, O V</creatorcontrib><title>Solitons and normal random matrices</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>We discuss a general relation between the solitons and statistical mechanics and show that the partition function of the normal random matrix model can be obtained from the multi-soliton solutions of the two-dimensional Toda lattice hierarchy in a special limit.</description><subject>classical integrability</subject><subject>matrix models</subject><subject>solvable lattice models</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j0FLxDAQhYMouK7ePRa8WncySZt4lEVXYcGDeg6TNIEubbMk9eC_t6UiXjzNY3jv8T7GrjnccdB6w5XEspK13lADgOGErX5fp3_0ObvI-QAgEKResZu32LVjHHJBQ1MMMfXUFWnSsS96GlPrfL5kZ4G67K9-7pp9PD2-b5_L_evuZfuwLx2qaiwbae-FtB41WfAQKkKhUGlBStdOgws1UBC6QsvJo5AoJbeEaF2DWlixZrD0uhRzTj6YY2p7Sl-Gg5khzUxhZgqzQE6R2yXSxqM5xM80TAP_t38DHGVR1Q</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Loutsenko, I M</creator><creator>Spiridonov, V P</creator><creator>Yermolayeva, O V</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Solitons and normal random matrices</title><author>Loutsenko, I M ; Spiridonov, V P ; Yermolayeva, O V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-d4b934be28ab0e0f5a2372783a786c80cf60af3852b1ae2342441ba22bcd283b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>classical integrability</topic><topic>matrix models</topic><topic>solvable lattice models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loutsenko, I M</creatorcontrib><creatorcontrib>Spiridonov, V P</creatorcontrib><creatorcontrib>Yermolayeva, O V</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loutsenko, I M</au><au>Spiridonov, V P</au><au>Yermolayeva, O V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solitons and normal random matrices</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>2023</volume><issue>10</issue><spage>103202</spage><pages>103202-</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><abstract>We discuss a general relation between the solitons and statistical mechanics and show that the partition function of the normal random matrix model can be obtained from the multi-soliton solutions of the two-dimensional Toda lattice hierarchy in a special limit.</abstract><pub>IOP Publishing</pub><doi>10.1088/1742-5468/ad002f</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2023-10, Vol.2023 (10), p.103202
issn 1742-5468
1742-5468
language eng
recordid cdi_crossref_primary_10_1088_1742_5468_ad002f
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects classical integrability
matrix models
solvable lattice models
title Solitons and normal random matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solitons%20and%20normal%20random%20matrices&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Loutsenko,%20I%20M&rft.date=2023-10-01&rft.volume=2023&rft.issue=10&rft.spage=103202&rft.pages=103202-&rft.issn=1742-5468&rft.eissn=1742-5468&rft_id=info:doi/10.1088/1742-5468/ad002f&rft_dat=%3Ciop_cross%3Ejstatad002f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true