Characterizing spatial point processes by percolation transitions

A set of discrete individual points located in an embedding continuum space can be seen as percolating or non-percolating, depending on the radius of the discs/spheres associated with each of them. This problem is relevant in theoretical ecology to analyze, e.g., the spatial percolation of a tree sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2022-07, Vol.2022 (7), p.73202
Hauptverfasser: Villegas, Pablo, Gili, Tommaso, Gabrielli, Andrea, Caldarelli, Guido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 73202
container_title Journal of statistical mechanics
container_volume 2022
creator Villegas, Pablo
Gili, Tommaso
Gabrielli, Andrea
Caldarelli, Guido
description A set of discrete individual points located in an embedding continuum space can be seen as percolating or non-percolating, depending on the radius of the discs/spheres associated with each of them. This problem is relevant in theoretical ecology to analyze, e.g., the spatial percolation of a tree species in a tropical forest or a savanna. Here, we revisit the problem of aggregating random points in continuum systems (from 2 to 6-dimensional Euclidean spaces) to analyze the nature of the corresponding percolation transition in spatial point processes. This problem finds a natural description in terms of the canonical ensemble but not in the usual grand-canonical one, customarily employed to describe percolation transitions. This leads us to analyze the question of ensemble equivalence and study whether the resulting canonical continuum percolation transition shares its universal properties with standard percolation transitions, analyzing diverse homogeneous and heterogeneous spatial point processes. We, therefore, provide a powerful tool to characterize and classify a vast class of natural point patterns, revealing their fundamental properties based on percolation phase transitions.
doi_str_mv 10.1088/1742-5468/ac7a2c
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_5468_ac7a2c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jstatac7a2c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-e284fb7b38076dcefba6ac35fd8a7ac4b347c1bd378cd5ab47a48f446c39d7e03</originalsourceid><addsrcrecordid>eNp1UMFKxDAUDKLgunr3mA-wbtqkTTwuRV1hwYuew8trollqE5J6WL_elop48fSGN28eM0PIdcluS6bUppSiKmrRqA2ghApPyOp3dfoHn5OLnA-M8YoJtSLb9h0S4GiT__LDG80RRg89jcEPI40poM3ZZmqONNqEoZ_oMNAxwZD9DPMlOXPQZ3v1M9fk9eH-pd0V--fHp3a7L7BSbCxspYQz0nDFZNOhdQYaQF67ToEEFIYLiaXpuFTY1WCEBKGcEA3yu05axteELX8xhZyTdTom_wHpqEum5wr0nFHPGfVSwSS5WSQ-RH0In2mYDP5__g2GE1_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterizing spatial point processes by percolation transitions</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Villegas, Pablo ; Gili, Tommaso ; Gabrielli, Andrea ; Caldarelli, Guido</creator><creatorcontrib>Villegas, Pablo ; Gili, Tommaso ; Gabrielli, Andrea ; Caldarelli, Guido</creatorcontrib><description>A set of discrete individual points located in an embedding continuum space can be seen as percolating or non-percolating, depending on the radius of the discs/spheres associated with each of them. This problem is relevant in theoretical ecology to analyze, e.g., the spatial percolation of a tree species in a tropical forest or a savanna. Here, we revisit the problem of aggregating random points in continuum systems (from 2 to 6-dimensional Euclidean spaces) to analyze the nature of the corresponding percolation transition in spatial point processes. This problem finds a natural description in terms of the canonical ensemble but not in the usual grand-canonical one, customarily employed to describe percolation transitions. This leads us to analyze the question of ensemble equivalence and study whether the resulting canonical continuum percolation transition shares its universal properties with standard percolation transitions, analyzing diverse homogeneous and heterogeneous spatial point processes. We, therefore, provide a powerful tool to characterize and classify a vast class of natural point patterns, revealing their fundamental properties based on percolation phase transitions.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/ac7a2c</identifier><identifier>CODEN: JSMTC6</identifier><language>eng</language><publisher>IOP Publishing and SISSA</publisher><subject>cluster aggregation ; computational biology ; percolation problems</subject><ispartof>Journal of statistical mechanics, 2022-07, Vol.2022 (7), p.73202</ispartof><rights>2022 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-e284fb7b38076dcefba6ac35fd8a7ac4b347c1bd378cd5ab47a48f446c39d7e03</citedby><cites>FETCH-LOGICAL-c280t-e284fb7b38076dcefba6ac35fd8a7ac4b347c1bd378cd5ab47a48f446c39d7e03</cites><orcidid>0000-0001-9154-1758 ; 0000-0001-9377-3616 ; 0000-0003-3705-7281 ; 0000-0002-1627-3754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/ac7a2c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Villegas, Pablo</creatorcontrib><creatorcontrib>Gili, Tommaso</creatorcontrib><creatorcontrib>Gabrielli, Andrea</creatorcontrib><creatorcontrib>Caldarelli, Guido</creatorcontrib><title>Characterizing spatial point processes by percolation transitions</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>A set of discrete individual points located in an embedding continuum space can be seen as percolating or non-percolating, depending on the radius of the discs/spheres associated with each of them. This problem is relevant in theoretical ecology to analyze, e.g., the spatial percolation of a tree species in a tropical forest or a savanna. Here, we revisit the problem of aggregating random points in continuum systems (from 2 to 6-dimensional Euclidean spaces) to analyze the nature of the corresponding percolation transition in spatial point processes. This problem finds a natural description in terms of the canonical ensemble but not in the usual grand-canonical one, customarily employed to describe percolation transitions. This leads us to analyze the question of ensemble equivalence and study whether the resulting canonical continuum percolation transition shares its universal properties with standard percolation transitions, analyzing diverse homogeneous and heterogeneous spatial point processes. We, therefore, provide a powerful tool to characterize and classify a vast class of natural point patterns, revealing their fundamental properties based on percolation phase transitions.</description><subject>cluster aggregation</subject><subject>computational biology</subject><subject>percolation problems</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKxDAUDKLgunr3mA-wbtqkTTwuRV1hwYuew8trollqE5J6WL_elop48fSGN28eM0PIdcluS6bUppSiKmrRqA2ghApPyOp3dfoHn5OLnA-M8YoJtSLb9h0S4GiT__LDG80RRg89jcEPI40poM3ZZmqONNqEoZ_oMNAxwZD9DPMlOXPQZ3v1M9fk9eH-pd0V--fHp3a7L7BSbCxspYQz0nDFZNOhdQYaQF67ToEEFIYLiaXpuFTY1WCEBKGcEA3yu05axteELX8xhZyTdTom_wHpqEum5wr0nFHPGfVSwSS5WSQ-RH0In2mYDP5__g2GE1_4</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Villegas, Pablo</creator><creator>Gili, Tommaso</creator><creator>Gabrielli, Andrea</creator><creator>Caldarelli, Guido</creator><general>IOP Publishing and SISSA</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9154-1758</orcidid><orcidid>https://orcid.org/0000-0001-9377-3616</orcidid><orcidid>https://orcid.org/0000-0003-3705-7281</orcidid><orcidid>https://orcid.org/0000-0002-1627-3754</orcidid></search><sort><creationdate>20220701</creationdate><title>Characterizing spatial point processes by percolation transitions</title><author>Villegas, Pablo ; Gili, Tommaso ; Gabrielli, Andrea ; Caldarelli, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-e284fb7b38076dcefba6ac35fd8a7ac4b347c1bd378cd5ab47a48f446c39d7e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cluster aggregation</topic><topic>computational biology</topic><topic>percolation problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villegas, Pablo</creatorcontrib><creatorcontrib>Gili, Tommaso</creatorcontrib><creatorcontrib>Gabrielli, Andrea</creatorcontrib><creatorcontrib>Caldarelli, Guido</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villegas, Pablo</au><au>Gili, Tommaso</au><au>Gabrielli, Andrea</au><au>Caldarelli, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing spatial point processes by percolation transitions</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>2022</volume><issue>7</issue><spage>73202</spage><pages>73202-</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><coden>JSMTC6</coden><abstract>A set of discrete individual points located in an embedding continuum space can be seen as percolating or non-percolating, depending on the radius of the discs/spheres associated with each of them. This problem is relevant in theoretical ecology to analyze, e.g., the spatial percolation of a tree species in a tropical forest or a savanna. Here, we revisit the problem of aggregating random points in continuum systems (from 2 to 6-dimensional Euclidean spaces) to analyze the nature of the corresponding percolation transition in spatial point processes. This problem finds a natural description in terms of the canonical ensemble but not in the usual grand-canonical one, customarily employed to describe percolation transitions. This leads us to analyze the question of ensemble equivalence and study whether the resulting canonical continuum percolation transition shares its universal properties with standard percolation transitions, analyzing diverse homogeneous and heterogeneous spatial point processes. We, therefore, provide a powerful tool to characterize and classify a vast class of natural point patterns, revealing their fundamental properties based on percolation phase transitions.</abstract><pub>IOP Publishing and SISSA</pub><doi>10.1088/1742-5468/ac7a2c</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9154-1758</orcidid><orcidid>https://orcid.org/0000-0001-9377-3616</orcidid><orcidid>https://orcid.org/0000-0003-3705-7281</orcidid><orcidid>https://orcid.org/0000-0002-1627-3754</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2022-07, Vol.2022 (7), p.73202
issn 1742-5468
1742-5468
language eng
recordid cdi_crossref_primary_10_1088_1742_5468_ac7a2c
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects cluster aggregation
computational biology
percolation problems
title Characterizing spatial point processes by percolation transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20spatial%20point%20processes%20by%20percolation%20transitions&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Villegas,%20Pablo&rft.date=2022-07-01&rft.volume=2022&rft.issue=7&rft.spage=73202&rft.pages=73202-&rft.issn=1742-5468&rft.eissn=1742-5468&rft.coden=JSMTC6&rft_id=info:doi/10.1088/1742-5468/ac7a2c&rft_dat=%3Ciop_cross%3Ejstatac7a2c%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true