Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit

We consider a particle with a Langevin dynamics driven by a uniform non-conservative force, in a one-dimensional potential with periodic boundary conditions. We are interested in the properties of the system for atypical values of the time-integral of a generalized particle current. To study these,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2020-09, Vol.2020 (9), p.93208
Hauptverfasser: Tizón-Escamilla, Nicolás, Lecomte, Vivien, Bertin, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 93208
container_title Journal of statistical mechanics
container_volume 2020
creator Tizón-Escamilla, Nicolás
Lecomte, Vivien
Bertin, Eric
description We consider a particle with a Langevin dynamics driven by a uniform non-conservative force, in a one-dimensional potential with periodic boundary conditions. We are interested in the properties of the system for atypical values of the time-integral of a generalized particle current. To study these, we bias the dynamics, at trajectory level, by a parameter conjugated to the current, within the large-deviation formalism. We investigate, in the weak-noise limit, the phase diagram spanned by the physical driving force and the parameter defining the biased process. We focus in particular on the depinning transition in this two-dimensional phase diagram. In the absence of trajectory bias, the depinning transition as a function of the force is characterized by the standard exponent 1 2 . We show that for any non-zero bias, the depinning transition is characterized by an inverse logarithmic behavior as a function of either the bias or the force, close to the critical lines. We also report a scaling exponent 1 3 for the current when considering the depinning transition in terms of the bias, fixing the non-conservative force to its critical value in the absence of bias. Then, focusing on the time-integrated particle current, we study the thermal rounding effects in the zero-current phase when the tilted potential exhibits a local minimum. We derive in this case the Arrhenius scaling, in the small noise limit, of both the particle current and the scaled cumulant generating function. This derivation of the Arrhenius scaling relies on the determination of the left eigenvector of the biased Fokker-Planck operator, to exponential order in the low-noise limit. An effective Poissonian statistics of the integrated current emerges in this limit.
doi_str_mv 10.1088/1742-5468/abb235
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_5468_abb235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03043369v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-1ce39d2afd4235a5114d321d21fa7044819a35721fa49a3240ca7ce652e56ec13</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhCMEEqVw5-grglC_8jpWFS8pEhc4W1vbaR1SO7LdIv49iYIqDnDa2dHMSvslyTXB9wSX5YIUnKYZz8sFrNeUZSfJ7Gid_tLnyUUILcaMYl7Okna1917biEKEaEI0MiCwCindG2uN3aDowQYTjbOocR4Bclanyuz04DoLHarBbvTBWNR7J3UIaJBxq9Gnho_UOhM06szOxMvkrIEu6KufOU_eHx_eVs9p_fr0slrWqWQ8iymRmlWKQqP48AZkhHDFKFGUNFBgzktSAcuKceWDohxLKKTOM6qzXEvC5snNdHcLnei92YH_Eg6MeF7WYvQww5yxvDqMWTxlpXcheN0cCwSLkasYwYkRnJi4DpXbqWJcL1q39wODINqRn6CYYlEJXA10S9GrZkjf_ZH-9_g3rP-IeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Tizón-Escamilla, Nicolás ; Lecomte, Vivien ; Bertin, Eric</creator><creatorcontrib>Tizón-Escamilla, Nicolás ; Lecomte, Vivien ; Bertin, Eric</creatorcontrib><description>We consider a particle with a Langevin dynamics driven by a uniform non-conservative force, in a one-dimensional potential with periodic boundary conditions. We are interested in the properties of the system for atypical values of the time-integral of a generalized particle current. To study these, we bias the dynamics, at trajectory level, by a parameter conjugated to the current, within the large-deviation formalism. We investigate, in the weak-noise limit, the phase diagram spanned by the physical driving force and the parameter defining the biased process. We focus in particular on the depinning transition in this two-dimensional phase diagram. In the absence of trajectory bias, the depinning transition as a function of the force is characterized by the standard exponent 1 2 . We show that for any non-zero bias, the depinning transition is characterized by an inverse logarithmic behavior as a function of either the bias or the force, close to the critical lines. We also report a scaling exponent 1 3 for the current when considering the depinning transition in terms of the bias, fixing the non-conservative force to its critical value in the absence of bias. Then, focusing on the time-integrated particle current, we study the thermal rounding effects in the zero-current phase when the tilted potential exhibits a local minimum. We derive in this case the Arrhenius scaling, in the small noise limit, of both the particle current and the scaled cumulant generating function. This derivation of the Arrhenius scaling relies on the determination of the left eigenvector of the biased Fokker-Planck operator, to exponential order in the low-noise limit. An effective Poissonian statistics of the integrated current emerges in this limit.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/abb235</identifier><identifier>CODEN: JSMTC6</identifier><language>eng</language><publisher>IOP Publishing and SISSA</publisher><subject>large deviations in non-equilibrium systems ; Physics ; stochastic particle dynamics ; weak-noise limit in rare events</subject><ispartof>Journal of statistical mechanics, 2020-09, Vol.2020 (9), p.93208</ispartof><rights>2020 IOP Publishing Ltd and SISSA Medialab srl</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-1ce39d2afd4235a5114d321d21fa7044819a35721fa49a3240ca7ce652e56ec13</cites><orcidid>0000-0003-4025-5852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/abb235/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03043369$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tizón-Escamilla, Nicolás</creatorcontrib><creatorcontrib>Lecomte, Vivien</creatorcontrib><creatorcontrib>Bertin, Eric</creatorcontrib><title>Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>We consider a particle with a Langevin dynamics driven by a uniform non-conservative force, in a one-dimensional potential with periodic boundary conditions. We are interested in the properties of the system for atypical values of the time-integral of a generalized particle current. To study these, we bias the dynamics, at trajectory level, by a parameter conjugated to the current, within the large-deviation formalism. We investigate, in the weak-noise limit, the phase diagram spanned by the physical driving force and the parameter defining the biased process. We focus in particular on the depinning transition in this two-dimensional phase diagram. In the absence of trajectory bias, the depinning transition as a function of the force is characterized by the standard exponent 1 2 . We show that for any non-zero bias, the depinning transition is characterized by an inverse logarithmic behavior as a function of either the bias or the force, close to the critical lines. We also report a scaling exponent 1 3 for the current when considering the depinning transition in terms of the bias, fixing the non-conservative force to its critical value in the absence of bias. Then, focusing on the time-integrated particle current, we study the thermal rounding effects in the zero-current phase when the tilted potential exhibits a local minimum. We derive in this case the Arrhenius scaling, in the small noise limit, of both the particle current and the scaled cumulant generating function. This derivation of the Arrhenius scaling relies on the determination of the left eigenvector of the biased Fokker-Planck operator, to exponential order in the low-noise limit. An effective Poissonian statistics of the integrated current emerges in this limit.</description><subject>large deviations in non-equilibrium systems</subject><subject>Physics</subject><subject>stochastic particle dynamics</subject><subject>weak-noise limit in rare events</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhCMEEqVw5-grglC_8jpWFS8pEhc4W1vbaR1SO7LdIv49iYIqDnDa2dHMSvslyTXB9wSX5YIUnKYZz8sFrNeUZSfJ7Gid_tLnyUUILcaMYl7Okna1917biEKEaEI0MiCwCindG2uN3aDowQYTjbOocR4Bclanyuz04DoLHarBbvTBWNR7J3UIaJBxq9Gnho_UOhM06szOxMvkrIEu6KufOU_eHx_eVs9p_fr0slrWqWQ8iymRmlWKQqP48AZkhHDFKFGUNFBgzktSAcuKceWDohxLKKTOM6qzXEvC5snNdHcLnei92YH_Eg6MeF7WYvQww5yxvDqMWTxlpXcheN0cCwSLkasYwYkRnJi4DpXbqWJcL1q39wODINqRn6CYYlEJXA10S9GrZkjf_ZH-9_g3rP-IeQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Tizón-Escamilla, Nicolás</creator><creator>Lecomte, Vivien</creator><creator>Bertin, Eric</creator><general>IOP Publishing and SISSA</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4025-5852</orcidid></search><sort><creationdate>20200901</creationdate><title>Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit</title><author>Tizón-Escamilla, Nicolás ; Lecomte, Vivien ; Bertin, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-1ce39d2afd4235a5114d321d21fa7044819a35721fa49a3240ca7ce652e56ec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>large deviations in non-equilibrium systems</topic><topic>Physics</topic><topic>stochastic particle dynamics</topic><topic>weak-noise limit in rare events</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tizón-Escamilla, Nicolás</creatorcontrib><creatorcontrib>Lecomte, Vivien</creatorcontrib><creatorcontrib>Bertin, Eric</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tizón-Escamilla, Nicolás</au><au>Lecomte, Vivien</au><au>Bertin, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>2020</volume><issue>9</issue><spage>93208</spage><pages>93208-</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><coden>JSMTC6</coden><abstract>We consider a particle with a Langevin dynamics driven by a uniform non-conservative force, in a one-dimensional potential with periodic boundary conditions. We are interested in the properties of the system for atypical values of the time-integral of a generalized particle current. To study these, we bias the dynamics, at trajectory level, by a parameter conjugated to the current, within the large-deviation formalism. We investigate, in the weak-noise limit, the phase diagram spanned by the physical driving force and the parameter defining the biased process. We focus in particular on the depinning transition in this two-dimensional phase diagram. In the absence of trajectory bias, the depinning transition as a function of the force is characterized by the standard exponent 1 2 . We show that for any non-zero bias, the depinning transition is characterized by an inverse logarithmic behavior as a function of either the bias or the force, close to the critical lines. We also report a scaling exponent 1 3 for the current when considering the depinning transition in terms of the bias, fixing the non-conservative force to its critical value in the absence of bias. Then, focusing on the time-integrated particle current, we study the thermal rounding effects in the zero-current phase when the tilted potential exhibits a local minimum. We derive in this case the Arrhenius scaling, in the small noise limit, of both the particle current and the scaled cumulant generating function. This derivation of the Arrhenius scaling relies on the determination of the left eigenvector of the biased Fokker-Planck operator, to exponential order in the low-noise limit. An effective Poissonian statistics of the integrated current emerges in this limit.</abstract><pub>IOP Publishing and SISSA</pub><doi>10.1088/1742-5468/abb235</doi><tpages>57</tpages><orcidid>https://orcid.org/0000-0003-4025-5852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2020-09, Vol.2020 (9), p.93208
issn 1742-5468
1742-5468
language eng
recordid cdi_crossref_primary_10_1088_1742_5468_abb235
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects large deviations in non-equilibrium systems
Physics
stochastic particle dynamics
weak-noise limit in rare events
title Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20statistics%20and%20depinning%20transition%20for%20a%20one-dimensional%20Langevin%20process%20in%20the%20weak-noise%20limit&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Tiz%C3%B3n-Escamilla,%20Nicol%C3%A1s&rft.date=2020-09-01&rft.volume=2020&rft.issue=9&rft.spage=93208&rft.pages=93208-&rft.issn=1742-5468&rft.eissn=1742-5468&rft.coden=JSMTC6&rft_id=info:doi/10.1088/1742-5468/abb235&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03043369v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true