Wigner function of a quantum system with polynomial potential

The Moyal equation for the Wigner function was obtained under the assumption that the potential is an analytic function. The polynomial form of the potential is a natural approximation of the analytical potential with any necessary accuracy. The simplest quantum system with a second-order polynomial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2020-05, Vol.2020 (5), p.53105
Hauptverfasser: Perepelkin, E E, Sadovnikov, B I, Inozemtseva, N G, Burlakov, E V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 53105
container_title Journal of statistical mechanics
container_volume 2020
creator Perepelkin, E E
Sadovnikov, B I
Inozemtseva, N G
Burlakov, E V
description The Moyal equation for the Wigner function was obtained under the assumption that the potential is an analytic function. The polynomial form of the potential is a natural approximation of the analytical potential with any necessary accuracy. The simplest quantum system with a second-order polynomial potential is a quantum harmonic oscillator. In this paper, for a quantum system with a polynomial potential of arbitrary order, explicit expressions are obtained for the matrix elements of the kernel operator in the basis of the eigenfunctions of the harmonic oscillator. Using the explicit representation for the kernel operator matrix elements, we construct the distributions of the Wigner function in the phase space for quantum systems with polynomial potentials. The connection of the modified Vlasov equation with the Moyal equation for the Wigner function is shown. Examples of effective numerical algorithms for finding Wigner functions with high accuracy are given.
doi_str_mv 10.1088/1742-5468/ab7bda
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_5468_ab7bda</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jstatab7bda</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-f9e327f2084fa81b94203277cf8136649c072a2688279d880551b5aeef0d4b23</originalsourceid><addsrcrecordid>eNp1j01LxDAQhoMouK7ePeYHWDdJ02Z68CCLX7DgZcFjSNtEs7RJTVKk_96WFfHiaR6GeWfmQeiakltKADZUcJYVvISNqkXdqhO0-m2d_uFzdBHjgZCcEQ4rdPdm350O2IyuSdY77A1W-HNULo09jlNMusdfNn3gwXeT871V3YxJuzTTJTozqov66qeu0f7xYb99znavTy_b-13WMCApM5XOmTCMADcKaF1xNt8XojFA87LkVUMEU6wEYKJqAUhR0LpQWhvS8prla0SOa5vgYwzayCHYXoVJUiIXe7noyUVPHu3nyM0xYv0gD34Mbv7v__Fv-CxcCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wigner function of a quantum system with polynomial potential</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Perepelkin, E E ; Sadovnikov, B I ; Inozemtseva, N G ; Burlakov, E V</creator><creatorcontrib>Perepelkin, E E ; Sadovnikov, B I ; Inozemtseva, N G ; Burlakov, E V</creatorcontrib><description>The Moyal equation for the Wigner function was obtained under the assumption that the potential is an analytic function. The polynomial form of the potential is a natural approximation of the analytical potential with any necessary accuracy. The simplest quantum system with a second-order polynomial potential is a quantum harmonic oscillator. In this paper, for a quantum system with a polynomial potential of arbitrary order, explicit expressions are obtained for the matrix elements of the kernel operator in the basis of the eigenfunctions of the harmonic oscillator. Using the explicit representation for the kernel operator matrix elements, we construct the distributions of the Wigner function in the phase space for quantum systems with polynomial potentials. The connection of the modified Vlasov equation with the Moyal equation for the Wigner function is shown. Examples of effective numerical algorithms for finding Wigner functions with high accuracy are given.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/ab7bda</identifier><identifier>CODEN: JSMTC6</identifier><language>eng</language><publisher>IOP Publishing and SISSA</publisher><subject>numerical simulations ; rigorous results in statistical mechanics</subject><ispartof>Journal of statistical mechanics, 2020-05, Vol.2020 (5), p.53105</ispartof><rights>2020 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-f9e327f2084fa81b94203277cf8136649c072a2688279d880551b5aeef0d4b23</citedby><cites>FETCH-LOGICAL-c280t-f9e327f2084fa81b94203277cf8136649c072a2688279d880551b5aeef0d4b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/ab7bda/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27915,27916,53837,53884</link.rule.ids></links><search><creatorcontrib>Perepelkin, E E</creatorcontrib><creatorcontrib>Sadovnikov, B I</creatorcontrib><creatorcontrib>Inozemtseva, N G</creatorcontrib><creatorcontrib>Burlakov, E V</creatorcontrib><title>Wigner function of a quantum system with polynomial potential</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>The Moyal equation for the Wigner function was obtained under the assumption that the potential is an analytic function. The polynomial form of the potential is a natural approximation of the analytical potential with any necessary accuracy. The simplest quantum system with a second-order polynomial potential is a quantum harmonic oscillator. In this paper, for a quantum system with a polynomial potential of arbitrary order, explicit expressions are obtained for the matrix elements of the kernel operator in the basis of the eigenfunctions of the harmonic oscillator. Using the explicit representation for the kernel operator matrix elements, we construct the distributions of the Wigner function in the phase space for quantum systems with polynomial potentials. The connection of the modified Vlasov equation with the Moyal equation for the Wigner function is shown. Examples of effective numerical algorithms for finding Wigner functions with high accuracy are given.</description><subject>numerical simulations</subject><subject>rigorous results in statistical mechanics</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQhoMouK7ePeYHWDdJ02Z68CCLX7DgZcFjSNtEs7RJTVKk_96WFfHiaR6GeWfmQeiakltKADZUcJYVvISNqkXdqhO0-m2d_uFzdBHjgZCcEQ4rdPdm350O2IyuSdY77A1W-HNULo09jlNMusdfNn3gwXeT871V3YxJuzTTJTozqov66qeu0f7xYb99znavTy_b-13WMCApM5XOmTCMADcKaF1xNt8XojFA87LkVUMEU6wEYKJqAUhR0LpQWhvS8prla0SOa5vgYwzayCHYXoVJUiIXe7noyUVPHu3nyM0xYv0gD34Mbv7v__Fv-CxcCg</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Perepelkin, E E</creator><creator>Sadovnikov, B I</creator><creator>Inozemtseva, N G</creator><creator>Burlakov, E V</creator><general>IOP Publishing and SISSA</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200522</creationdate><title>Wigner function of a quantum system with polynomial potential</title><author>Perepelkin, E E ; Sadovnikov, B I ; Inozemtseva, N G ; Burlakov, E V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-f9e327f2084fa81b94203277cf8136649c072a2688279d880551b5aeef0d4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>numerical simulations</topic><topic>rigorous results in statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perepelkin, E E</creatorcontrib><creatorcontrib>Sadovnikov, B I</creatorcontrib><creatorcontrib>Inozemtseva, N G</creatorcontrib><creatorcontrib>Burlakov, E V</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perepelkin, E E</au><au>Sadovnikov, B I</au><au>Inozemtseva, N G</au><au>Burlakov, E V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wigner function of a quantum system with polynomial potential</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>2020</volume><issue>5</issue><spage>53105</spage><pages>53105-</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><coden>JSMTC6</coden><abstract>The Moyal equation for the Wigner function was obtained under the assumption that the potential is an analytic function. The polynomial form of the potential is a natural approximation of the analytical potential with any necessary accuracy. The simplest quantum system with a second-order polynomial potential is a quantum harmonic oscillator. In this paper, for a quantum system with a polynomial potential of arbitrary order, explicit expressions are obtained for the matrix elements of the kernel operator in the basis of the eigenfunctions of the harmonic oscillator. Using the explicit representation for the kernel operator matrix elements, we construct the distributions of the Wigner function in the phase space for quantum systems with polynomial potentials. The connection of the modified Vlasov equation with the Moyal equation for the Wigner function is shown. Examples of effective numerical algorithms for finding Wigner functions with high accuracy are given.</abstract><pub>IOP Publishing and SISSA</pub><doi>10.1088/1742-5468/ab7bda</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2020-05, Vol.2020 (5), p.53105
issn 1742-5468
1742-5468
language eng
recordid cdi_crossref_primary_10_1088_1742_5468_ab7bda
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects numerical simulations
rigorous results in statistical mechanics
title Wigner function of a quantum system with polynomial potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wigner%20function%20of%20a%20quantum%20system%20with%20polynomial%20potential&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Perepelkin,%20E%20E&rft.date=2020-05-22&rft.volume=2020&rft.issue=5&rft.spage=53105&rft.pages=53105-&rft.issn=1742-5468&rft.eissn=1742-5468&rft.coden=JSMTC6&rft_id=info:doi/10.1088/1742-5468/ab7bda&rft_dat=%3Ciop_cross%3Ejstatab7bda%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true