Breakdown of the finite-time and -population scalings of the large deviation function in the large-size limit of a contact process

In a recent study (Nemoto et al 2017 Phys. Rev. E 95 012102; Guevara Hidalgo et al 2017 Phys. Rev. E 95 062134), the finite-time (t) and -population size (Nc) scalings in the evaluation of a large deviation function (LDF) estimator were analyzed by means of the cloning algorithm. These scalings prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2018-08, Vol.2018 (8), p.83211
1. Verfasser: Guevara Hidalgo, Esteban
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 83211
container_title Journal of statistical mechanics
container_volume 2018
creator Guevara Hidalgo, Esteban
description In a recent study (Nemoto et al 2017 Phys. Rev. E 95 012102; Guevara Hidalgo et al 2017 Phys. Rev. E 95 062134), the finite-time (t) and -population size (Nc) scalings in the evaluation of a large deviation function (LDF) estimator were analyzed by means of the cloning algorithm. These scalings provide valuable information about the convergence of the LDF estimator in the infinite-t and infinite-Nc limits. For the cases analyzed in that study, the scalings of the systematic errors of the estimator were found to behave as t−1 and in the large-t and large-Nc asymptotics. Moreover, it was shown how this convergence speed can be used in order to extract an asymptotic limit which rendered a better LDF estimation in comparison to the standard estimator. However, the validity of these scaling laws, and thus the convergence of the estimator, was proved only in systems for which the number of sites L (where the dynamics occurs) was small. In this paper, the analysis is extended to a wider range of system sizes L. We show how the introduction of the exponents and allows us to characterize the behavior of the LDF estimator for any system size. From these generalized - and -scalings, we verify that in the large-L limit the t−1- and -scalings are no longer valid. Moreover, as the convergence of the estimator relies on the positivity of these exponents, we show how for some cases can be negative implying that the estimation provided by the cloning algorithm is no longer reliable.
doi_str_mv 10.1088/1742-5468/aad6b2
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_5468_aad6b2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jstataad6b2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-a21eeb8af3435a956f6f6528de5211dc1eb04d0e41d5c7fc83759309565314493</originalsourceid><addsrcrecordid>eNp1kDlPAzEQhS0EEiHQU_oHYOIzcUqIuCQkGqgtx0dw2Ngr2wFByS9nl-Vq0BTzNPPeaPQBcEzwKcFSTsiMUyT4VE60ttMl3QGjn9HuH70PDkpZY8wo5nIE3s-z0082vUSYPKyPDvoQQ3Woho2DOlqI2tRuG11DirAY3YS4Kt_eRueVg9Y9h2Hvt9F8ihB_96iEt06GTah9TkOTYtWmwjYn40o5BHteN8UdffUxeLi8uF9co9u7q5vF2S0ylLGKNCXOLaX2jDOh52LquxJUWicoIdYQt8TcYseJFWbmjWQzMWe4MwpGOJ-zMcDDXZNTKdl51eaw0flVEax6hqqHpHpIamDYRU6GSEitWqdtjt2D_9s_AN_ldO8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Breakdown of the finite-time and -population scalings of the large deviation function in the large-size limit of a contact process</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Guevara Hidalgo, Esteban</creator><creatorcontrib>Guevara Hidalgo, Esteban</creatorcontrib><description>In a recent study (Nemoto et al 2017 Phys. Rev. E 95 012102; Guevara Hidalgo et al 2017 Phys. Rev. E 95 062134), the finite-time (t) and -population size (Nc) scalings in the evaluation of a large deviation function (LDF) estimator were analyzed by means of the cloning algorithm. These scalings provide valuable information about the convergence of the LDF estimator in the infinite-t and infinite-Nc limits. For the cases analyzed in that study, the scalings of the systematic errors of the estimator were found to behave as t−1 and in the large-t and large-Nc asymptotics. Moreover, it was shown how this convergence speed can be used in order to extract an asymptotic limit which rendered a better LDF estimation in comparison to the standard estimator. However, the validity of these scaling laws, and thus the convergence of the estimator, was proved only in systems for which the number of sites L (where the dynamics occurs) was small. In this paper, the analysis is extended to a wider range of system sizes L. We show how the introduction of the exponents and allows us to characterize the behavior of the LDF estimator for any system size. From these generalized - and -scalings, we verify that in the large-L limit the t−1- and -scalings are no longer valid. Moreover, as the convergence of the estimator relies on the positivity of these exponents, we show how for some cases can be negative implying that the estimation provided by the cloning algorithm is no longer reliable.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/aad6b2</identifier><identifier>CODEN: JSMTC6</identifier><language>eng</language><publisher>IOP Publishing and SISSA</publisher><ispartof>Journal of statistical mechanics, 2018-08, Vol.2018 (8), p.83211</ispartof><rights>2018 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-a21eeb8af3435a956f6f6528de5211dc1eb04d0e41d5c7fc83759309565314493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/aad6b2/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Guevara Hidalgo, Esteban</creatorcontrib><title>Breakdown of the finite-time and -population scalings of the large deviation function in the large-size limit of a contact process</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>In a recent study (Nemoto et al 2017 Phys. Rev. E 95 012102; Guevara Hidalgo et al 2017 Phys. Rev. E 95 062134), the finite-time (t) and -population size (Nc) scalings in the evaluation of a large deviation function (LDF) estimator were analyzed by means of the cloning algorithm. These scalings provide valuable information about the convergence of the LDF estimator in the infinite-t and infinite-Nc limits. For the cases analyzed in that study, the scalings of the systematic errors of the estimator were found to behave as t−1 and in the large-t and large-Nc asymptotics. Moreover, it was shown how this convergence speed can be used in order to extract an asymptotic limit which rendered a better LDF estimation in comparison to the standard estimator. However, the validity of these scaling laws, and thus the convergence of the estimator, was proved only in systems for which the number of sites L (where the dynamics occurs) was small. In this paper, the analysis is extended to a wider range of system sizes L. We show how the introduction of the exponents and allows us to characterize the behavior of the LDF estimator for any system size. From these generalized - and -scalings, we verify that in the large-L limit the t−1- and -scalings are no longer valid. Moreover, as the convergence of the estimator relies on the positivity of these exponents, we show how for some cases can be negative implying that the estimation provided by the cloning algorithm is no longer reliable.</description><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDlPAzEQhS0EEiHQU_oHYOIzcUqIuCQkGqgtx0dw2Ngr2wFByS9nl-Vq0BTzNPPeaPQBcEzwKcFSTsiMUyT4VE60ttMl3QGjn9HuH70PDkpZY8wo5nIE3s-z0082vUSYPKyPDvoQQ3Woho2DOlqI2tRuG11DirAY3YS4Kt_eRueVg9Y9h2Hvt9F8ihB_96iEt06GTah9TkOTYtWmwjYn40o5BHteN8UdffUxeLi8uF9co9u7q5vF2S0ylLGKNCXOLaX2jDOh52LquxJUWicoIdYQt8TcYseJFWbmjWQzMWe4MwpGOJ-zMcDDXZNTKdl51eaw0flVEax6hqqHpHpIamDYRU6GSEitWqdtjt2D_9s_AN_ldO8</recordid><startdate>20180829</startdate><enddate>20180829</enddate><creator>Guevara Hidalgo, Esteban</creator><general>IOP Publishing and SISSA</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180829</creationdate><title>Breakdown of the finite-time and -population scalings of the large deviation function in the large-size limit of a contact process</title><author>Guevara Hidalgo, Esteban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-a21eeb8af3435a956f6f6528de5211dc1eb04d0e41d5c7fc83759309565314493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guevara Hidalgo, Esteban</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guevara Hidalgo, Esteban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakdown of the finite-time and -population scalings of the large deviation function in the large-size limit of a contact process</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2018-08-29</date><risdate>2018</risdate><volume>2018</volume><issue>8</issue><spage>83211</spage><pages>83211-</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><coden>JSMTC6</coden><abstract>In a recent study (Nemoto et al 2017 Phys. Rev. E 95 012102; Guevara Hidalgo et al 2017 Phys. Rev. E 95 062134), the finite-time (t) and -population size (Nc) scalings in the evaluation of a large deviation function (LDF) estimator were analyzed by means of the cloning algorithm. These scalings provide valuable information about the convergence of the LDF estimator in the infinite-t and infinite-Nc limits. For the cases analyzed in that study, the scalings of the systematic errors of the estimator were found to behave as t−1 and in the large-t and large-Nc asymptotics. Moreover, it was shown how this convergence speed can be used in order to extract an asymptotic limit which rendered a better LDF estimation in comparison to the standard estimator. However, the validity of these scaling laws, and thus the convergence of the estimator, was proved only in systems for which the number of sites L (where the dynamics occurs) was small. In this paper, the analysis is extended to a wider range of system sizes L. We show how the introduction of the exponents and allows us to characterize the behavior of the LDF estimator for any system size. From these generalized - and -scalings, we verify that in the large-L limit the t−1- and -scalings are no longer valid. Moreover, as the convergence of the estimator relies on the positivity of these exponents, we show how for some cases can be negative implying that the estimation provided by the cloning algorithm is no longer reliable.</abstract><pub>IOP Publishing and SISSA</pub><doi>10.1088/1742-5468/aad6b2</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2018-08, Vol.2018 (8), p.83211
issn 1742-5468
1742-5468
language eng
recordid cdi_crossref_primary_10_1088_1742_5468_aad6b2
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Breakdown of the finite-time and -population scalings of the large deviation function in the large-size limit of a contact process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakdown%20of%20the%20finite-time%20and%20-population%20scalings%20of%20the%20large%20deviation%20function%20in%20the%20large-size%20limit%20of%20a%20contact%20process&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Guevara%20Hidalgo,%20Esteban&rft.date=2018-08-29&rft.volume=2018&rft.issue=8&rft.spage=83211&rft.pages=83211-&rft.issn=1742-5468&rft.eissn=1742-5468&rft.coden=JSMTC6&rft_id=info:doi/10.1088/1742-5468/aad6b2&rft_dat=%3Ciop_cross%3Ejstataad6b2%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true