Stretched exponential dynamics of coupled logistic maps on a small-world network

We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2018-02, Vol.2018 (2), p.23212
Hauptverfasser: Mahajan, Ashwini V, Gade, Prashant M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 23212
container_title Journal of statistical mechanics
container_volume 2018
creator Mahajan, Ashwini V
Gade, Prashant M
description We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p→1. With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.
doi_str_mv 10.1088/1742-5468/aaac55
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_5468_aaac55</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jstataaac55</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-c71a059ddcc178be3796706a52d268a47d19dace7249f3c2e64a9e78478a6a253</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLgunr3mB9g3SRNmvQoi1-woKCewzNJNWvalKSL7r-3pSJePL3hzZvHzCB0TsklJUqtqOSsELxSKwAwQhygxe_q8A8-Ric5bwkpGeFqgR6fhuQG8-4sdl997Fw3eAjY7jtovck4NtjEXR9GPsQ3nwdvcAv9SHQYcG4hhOIzpmBx54YRfJyiowZCdmc_c4lebq6f13fF5uH2fn21KQxTZCiMpEBEba0xVKpXV8q6kqQCwSyrFHBpaW3BOMl43ZSGuYpD7aTiUkEFTJRLROa_JsWck2t0n3wLaa8p0VMjeoqsp8h6bmSUXMwSH3u9jbvUjQb_P_8GDChjmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stretched exponential dynamics of coupled logistic maps on a small-world network</title><source>Institute of Physics Journals</source><creator>Mahajan, Ashwini V ; Gade, Prashant M</creator><creatorcontrib>Mahajan, Ashwini V ; Gade, Prashant M</creatorcontrib><description>We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p→1. With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/aaac55</identifier><identifier>CODEN: JSMTC6</identifier><language>eng</language><publisher>IOP Publishing and SISSA</publisher><ispartof>Journal of statistical mechanics, 2018-02, Vol.2018 (2), p.23212</ispartof><rights>2018 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-c71a059ddcc178be3796706a52d268a47d19dace7249f3c2e64a9e78478a6a253</citedby><cites>FETCH-LOGICAL-c280t-c71a059ddcc178be3796706a52d268a47d19dace7249f3c2e64a9e78478a6a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/aaac55/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Mahajan, Ashwini V</creatorcontrib><creatorcontrib>Gade, Prashant M</creatorcontrib><title>Stretched exponential dynamics of coupled logistic maps on a small-world network</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p→1. With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.</description><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKLgunr3mB9g3SRNmvQoi1-woKCewzNJNWvalKSL7r-3pSJePL3hzZvHzCB0TsklJUqtqOSsELxSKwAwQhygxe_q8A8-Ric5bwkpGeFqgR6fhuQG8-4sdl997Fw3eAjY7jtovck4NtjEXR9GPsQ3nwdvcAv9SHQYcG4hhOIzpmBx54YRfJyiowZCdmc_c4lebq6f13fF5uH2fn21KQxTZCiMpEBEba0xVKpXV8q6kqQCwSyrFHBpaW3BOMl43ZSGuYpD7aTiUkEFTJRLROa_JsWck2t0n3wLaa8p0VMjeoqsp8h6bmSUXMwSH3u9jbvUjQb_P_8GDChjmQ</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Mahajan, Ashwini V</creator><creator>Gade, Prashant M</creator><general>IOP Publishing and SISSA</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180227</creationdate><title>Stretched exponential dynamics of coupled logistic maps on a small-world network</title><author>Mahajan, Ashwini V ; Gade, Prashant M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-c71a059ddcc178be3796706a52d268a47d19dace7249f3c2e64a9e78478a6a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahajan, Ashwini V</creatorcontrib><creatorcontrib>Gade, Prashant M</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahajan, Ashwini V</au><au>Gade, Prashant M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretched exponential dynamics of coupled logistic maps on a small-world network</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>2018</volume><issue>2</issue><spage>23212</spage><pages>23212-</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><coden>JSMTC6</coden><abstract>We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p→1. With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.</abstract><pub>IOP Publishing and SISSA</pub><doi>10.1088/1742-5468/aaac55</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2018-02, Vol.2018 (2), p.23212
issn 1742-5468
1742-5468
language eng
recordid cdi_crossref_primary_10_1088_1742_5468_aaac55
source Institute of Physics Journals
title Stretched exponential dynamics of coupled logistic maps on a small-world network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretched%20exponential%20dynamics%20of%20coupled%20logistic%20maps%20on%20a%20small-world%20network&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Mahajan,%20Ashwini%20V&rft.date=2018-02-27&rft.volume=2018&rft.issue=2&rft.spage=23212&rft.pages=23212-&rft.issn=1742-5468&rft.eissn=1742-5468&rft.coden=JSMTC6&rft_id=info:doi/10.1088/1742-5468/aaac55&rft_dat=%3Ciop_cross%3Ejstataaac55%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true