Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform

A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysics and engineering 2017-08, Vol.14 (4), p.900-908
Hauptverfasser: Xie, Fang, Xiao, Chengwen, Liu, Ruilin, Zhang, Lili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 908
container_issue 4
container_start_page 900
container_title Journal of geophysics and engineering
container_volume 14
creator Xie, Fang
Xiao, Chengwen
Liu, Ruilin
Zhang, Lili
description A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.
doi_str_mv 10.1088/1742-2140/aa6ad3
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1742_2140_aa6ad3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jgeaa6ad3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-73d145ff9a33f48e9809869cd6d85a2fc480026da5c797405c764114d4f732c13</originalsourceid><addsrcrecordid>eNp1UD1PwzAUtBBIlMLO6IGRUDt2EmdEFRSkIhaYrYc_kpQ0jmwXxL_HoagTvOWeTnen0yF0SckNJUIsaMXzLKecLABK0OwIzQ7U8eFn-Sk6C2FDCEtXzJB62vWxy2LrTWhdr7E22eC60A0Ndhab3qjoOwU97rbQTGzvmh_UEAG_QTAauwHH1uBP-Ej6iEdQ7wmihyFY57fn6MRCH8zFL87R6_3dy_IhWz-vHpe360yxgsasYprywtoaGLNcmFqQWpS10qUWBeRWcUFIXmooVFVXnCQoOaVcc1uxXFE2R2Sfq7wLwRsrR59a-y9JiZxGktMKclpE7kdKlqu9pXOj3LidH1JBuWmMpFxyWRMiR22T7PoP2b-p31uLdeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xie, Fang ; Xiao, Chengwen ; Liu, Ruilin ; Zhang, Lili</creator><creatorcontrib>Xie, Fang ; Xiao, Chengwen ; Liu, Ruilin ; Zhang, Lili</creatorcontrib><description>A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.</description><identifier>ISSN: 1742-2132</identifier><identifier>EISSN: 1742-2140</identifier><identifier>DOI: 10.1088/1742-2140/aa6ad3</identifier><identifier>CODEN: JGEOC3</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>electric imaging logging data ; fractured-vuggy carbonatite reservoir ; multi-threshold de-noising ; wavelet packet transform</subject><ispartof>Journal of geophysics and engineering, 2017-08, Vol.14 (4), p.900-908</ispartof><rights>2017 Sinopec Geophysical Research Institute</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-73d145ff9a33f48e9809869cd6d85a2fc480026da5c797405c764114d4f732c13</citedby><cites>FETCH-LOGICAL-c351t-73d145ff9a33f48e9809869cd6d85a2fc480026da5c797405c764114d4f732c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xie, Fang</creatorcontrib><creatorcontrib>Xiao, Chengwen</creatorcontrib><creatorcontrib>Liu, Ruilin</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><title>Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform</title><title>Journal of geophysics and engineering</title><addtitle>JGE</addtitle><addtitle>J. Geophys. Eng</addtitle><description>A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.</description><subject>electric imaging logging data</subject><subject>fractured-vuggy carbonatite reservoir</subject><subject>multi-threshold de-noising</subject><subject>wavelet packet transform</subject><issn>1742-2132</issn><issn>1742-2140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAUtBBIlMLO6IGRUDt2EmdEFRSkIhaYrYc_kpQ0jmwXxL_HoagTvOWeTnen0yF0SckNJUIsaMXzLKecLABK0OwIzQ7U8eFn-Sk6C2FDCEtXzJB62vWxy2LrTWhdr7E22eC60A0Ndhab3qjoOwU97rbQTGzvmh_UEAG_QTAauwHH1uBP-Ej6iEdQ7wmihyFY57fn6MRCH8zFL87R6_3dy_IhWz-vHpe360yxgsasYprywtoaGLNcmFqQWpS10qUWBeRWcUFIXmooVFVXnCQoOaVcc1uxXFE2R2Sfq7wLwRsrR59a-y9JiZxGktMKclpE7kdKlqu9pXOj3LidH1JBuWmMpFxyWRMiR22T7PoP2b-p31uLdeU</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Xie, Fang</creator><creator>Xiao, Chengwen</creator><creator>Liu, Ruilin</creator><creator>Zhang, Lili</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform</title><author>Xie, Fang ; Xiao, Chengwen ; Liu, Ruilin ; Zhang, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-73d145ff9a33f48e9809869cd6d85a2fc480026da5c797405c764114d4f732c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>electric imaging logging data</topic><topic>fractured-vuggy carbonatite reservoir</topic><topic>multi-threshold de-noising</topic><topic>wavelet packet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Fang</creatorcontrib><creatorcontrib>Xiao, Chengwen</creatorcontrib><creatorcontrib>Liu, Ruilin</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geophysics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Fang</au><au>Xiao, Chengwen</au><au>Liu, Ruilin</au><au>Zhang, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform</atitle><jtitle>Journal of geophysics and engineering</jtitle><stitle>JGE</stitle><addtitle>J. Geophys. Eng</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>14</volume><issue>4</issue><spage>900</spage><epage>908</epage><pages>900-908</pages><issn>1742-2132</issn><eissn>1742-2140</eissn><coden>JGEOC3</coden><abstract>A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.</abstract><pub>IOP Publishing</pub><doi>10.1088/1742-2140/aa6ad3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-2132
ispartof Journal of geophysics and engineering, 2017-08, Vol.14 (4), p.900-908
issn 1742-2132
1742-2140
language eng
recordid cdi_crossref_primary_10_1088_1742_2140_aa6ad3
source Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals
subjects electric imaging logging data
fractured-vuggy carbonatite reservoir
multi-threshold de-noising
wavelet packet transform
title Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-threshold%20de-noising%20of%20electrical%20imaging%20logging%20data%20based%20on%20the%20wavelet%20packet%20transform&rft.jtitle=Journal%20of%20geophysics%20and%20engineering&rft.au=Xie,%20Fang&rft.date=2017-08-01&rft.volume=14&rft.issue=4&rft.spage=900&rft.epage=908&rft.pages=900-908&rft.issn=1742-2132&rft.eissn=1742-2140&rft.coden=JGEOC3&rft_id=info:doi/10.1088/1742-2140/aa6ad3&rft_dat=%3Ciop_cross%3Ejgeaa6ad3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true