Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction
Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez et al 2022 Nucl. Fusion...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2025-01, Vol.65 (1), p.16002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 16002 |
container_title | Nuclear fusion |
container_volume | 65 |
creator | Howard, N.T. Rodriguez-Fernandez, P. Holland, C. Candy, J. |
description | Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez
et al
2022
Nucl. Fusion
62
076036), high fidelity, nonlinear gyrokinetic simulations performed with the CGYRO code (Candy
et al
2016
J. Comput. Phys.
324
73), were used to predict profiles of
T
i
,
T
e
, and
n
e
while including the effects of alpha heating, auxiliary power (NBI + ECH), collisional energy exchange, and radiation losses inside of
r
/
a
= 0.9. Predicted profiles and resulting energy confinement are found to produce fusion power and gain that are approximately consistent with mission goals (
P
fusion
=
500
MW at
Q
= 10) for the baseline scenario and exhibit energy confinement that is within 1
σ
of the H-mode energy confinement scaling. The power of the surrogate modeling technique is demonstrated through the prediction of alternative ITER scenarios with reduced computational cost. These scenarios include conditions with maximized fusion gain and an investigation of potential resonant magnetic perturbation (RMP) effects on performance with a minimal number of gyrokinetic profile iterations required (3–6). These predictions highlight the stiff ITG nature of the core turbulence predicted in the ITER baseline and demonstrate that
Q
>
17 conditions may be accessible by reducing auxiliary input power while operating in IBS conditions. Prediction of full kinetic profiles allowed for the projection of hydrogen isotope effects around ITER baseline conditions. The gyrokinetic fuel ion species was varied from H, D, and 50/50 D-T and kinetic profiles were predicted. Results indicate that a weak or negligible isotope effect will be observed to arise from core turbulence in IBS conditions. The resulting energy confinement, turbulence, and density peaking, and the implications for ITER operations will be discussed. |
doi_str_mv | 10.1088/1741-4326/ad8804 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_ad8804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a7f527adb3404bd798b2868a6ca70832</doaj_id><sourcerecordid>nfad8804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-3ee6e7fac920f8bf496de6df280f9d682e0cc377fb7e75be9dbc6e6d7f82a223</originalsourceid><addsrcrecordid>eNp1UcFu1DAQtRCVupTee7Q4E-o4ju0cUVVgpUogtHdrbI8XL1k7srNI_XsSAr1xmpmnN--N5hFy17IPLdP6vlWibUTH5T14rZl4RXYv0GuyY4wPTd-3_TV5U-uJsVa0Xbcj528FfXRzzInmQCcsIZczJIcUkqfzpdjLiOsYE90fHr9TeykppiOdRqhnqPRXBJpyGmNCKPT4XPLPpZ2jo1PJIY641H8Wb8lVgLHi7d96Qw6fHg8PX5qnr5_3Dx-fGscHPTcdokQVwA2cBW2DGKRH6QPXLAxeao7MuU6pYBWq3uLgrZMLQQXNgfPuhuw3WZ_hZKYSz1CeTYZo_gC5HA2U5cIRDajQcwXedoIJ69WgLddSg3SgmO5WrXebVq5zNNXFGd0Pl1NCNxsulFS9WEhsI7mSay0YXkxbZtZ4zJqFWbMwWzzLyvttJebJnPLy1OUh_6f_BiXIktQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><creator>Howard, N.T. ; Rodriguez-Fernandez, P. ; Holland, C. ; Candy, J.</creator><creatorcontrib>Howard, N.T. ; Rodriguez-Fernandez, P. ; Holland, C. ; Candy, J.</creatorcontrib><description>Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez
et al
2022
Nucl. Fusion
62
076036), high fidelity, nonlinear gyrokinetic simulations performed with the CGYRO code (Candy
et al
2016
J. Comput. Phys.
324
73), were used to predict profiles of
T
i
,
T
e
, and
n
e
while including the effects of alpha heating, auxiliary power (NBI + ECH), collisional energy exchange, and radiation losses inside of
r
/
a
= 0.9. Predicted profiles and resulting energy confinement are found to produce fusion power and gain that are approximately consistent with mission goals (
P
fusion
=
500
MW at
Q
= 10) for the baseline scenario and exhibit energy confinement that is within 1
σ
of the H-mode energy confinement scaling. The power of the surrogate modeling technique is demonstrated through the prediction of alternative ITER scenarios with reduced computational cost. These scenarios include conditions with maximized fusion gain and an investigation of potential resonant magnetic perturbation (RMP) effects on performance with a minimal number of gyrokinetic profile iterations required (3–6). These predictions highlight the stiff ITG nature of the core turbulence predicted in the ITER baseline and demonstrate that
Q
>
17 conditions may be accessible by reducing auxiliary input power while operating in IBS conditions. Prediction of full kinetic profiles allowed for the projection of hydrogen isotope effects around ITER baseline conditions. The gyrokinetic fuel ion species was varied from H, D, and 50/50 D-T and kinetic profiles were predicted. Results indicate that a weak or negligible isotope effect will be observed to arise from core turbulence in IBS conditions. The resulting energy confinement, turbulence, and density peaking, and the implications for ITER operations will be discussed.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ad8804</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IAEA: IOP Publishing</publisher><subject>gyrokinetics ; transport ; turbulence</subject><ispartof>Nuclear fusion, 2025-01, Vol.65 (1), p.16002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-3ee6e7fac920f8bf496de6df280f9d682e0cc377fb7e75be9dbc6e6d7f82a223</cites><orcidid>0000-0001-6029-2306 ; 0000-0002-8787-6309 ; 0000-0003-3884-6485 ; 0000-0002-7361-1131 ; 0000000338846485 ; 0000000273611131 ; 0000000287876309 ; 0000000160292306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ad8804/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2095,27903,27904,38869,53846</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2476754$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Howard, N.T.</creatorcontrib><creatorcontrib>Rodriguez-Fernandez, P.</creatorcontrib><creatorcontrib>Holland, C.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><title>Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez
et al
2022
Nucl. Fusion
62
076036), high fidelity, nonlinear gyrokinetic simulations performed with the CGYRO code (Candy
et al
2016
J. Comput. Phys.
324
73), were used to predict profiles of
T
i
,
T
e
, and
n
e
while including the effects of alpha heating, auxiliary power (NBI + ECH), collisional energy exchange, and radiation losses inside of
r
/
a
= 0.9. Predicted profiles and resulting energy confinement are found to produce fusion power and gain that are approximately consistent with mission goals (
P
fusion
=
500
MW at
Q
= 10) for the baseline scenario and exhibit energy confinement that is within 1
σ
of the H-mode energy confinement scaling. The power of the surrogate modeling technique is demonstrated through the prediction of alternative ITER scenarios with reduced computational cost. These scenarios include conditions with maximized fusion gain and an investigation of potential resonant magnetic perturbation (RMP) effects on performance with a minimal number of gyrokinetic profile iterations required (3–6). These predictions highlight the stiff ITG nature of the core turbulence predicted in the ITER baseline and demonstrate that
Q
>
17 conditions may be accessible by reducing auxiliary input power while operating in IBS conditions. Prediction of full kinetic profiles allowed for the projection of hydrogen isotope effects around ITER baseline conditions. The gyrokinetic fuel ion species was varied from H, D, and 50/50 D-T and kinetic profiles were predicted. Results indicate that a weak or negligible isotope effect will be observed to arise from core turbulence in IBS conditions. The resulting energy confinement, turbulence, and density peaking, and the implications for ITER operations will be discussed.</description><subject>gyrokinetics</subject><subject>transport</subject><subject>turbulence</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UcFu1DAQtRCVupTee7Q4E-o4ju0cUVVgpUogtHdrbI8XL1k7srNI_XsSAr1xmpmnN--N5hFy17IPLdP6vlWibUTH5T14rZl4RXYv0GuyY4wPTd-3_TV5U-uJsVa0Xbcj528FfXRzzInmQCcsIZczJIcUkqfzpdjLiOsYE90fHr9TeykppiOdRqhnqPRXBJpyGmNCKPT4XPLPpZ2jo1PJIY641H8Wb8lVgLHi7d96Qw6fHg8PX5qnr5_3Dx-fGscHPTcdokQVwA2cBW2DGKRH6QPXLAxeao7MuU6pYBWq3uLgrZMLQQXNgfPuhuw3WZ_hZKYSz1CeTYZo_gC5HA2U5cIRDajQcwXedoIJ69WgLddSg3SgmO5WrXebVq5zNNXFGd0Pl1NCNxsulFS9WEhsI7mSay0YXkxbZtZ4zJqFWbMwWzzLyvttJebJnPLy1OUh_6f_BiXIktQ</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Howard, N.T.</creator><creator>Rodriguez-Fernandez, P.</creator><creator>Holland, C.</creator><creator>Candy, J.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6029-2306</orcidid><orcidid>https://orcid.org/0000-0002-8787-6309</orcidid><orcidid>https://orcid.org/0000-0003-3884-6485</orcidid><orcidid>https://orcid.org/0000-0002-7361-1131</orcidid><orcidid>https://orcid.org/0000000338846485</orcidid><orcidid>https://orcid.org/0000000273611131</orcidid><orcidid>https://orcid.org/0000000287876309</orcidid><orcidid>https://orcid.org/0000000160292306</orcidid></search><sort><creationdate>20250101</creationdate><title>Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction</title><author>Howard, N.T. ; Rodriguez-Fernandez, P. ; Holland, C. ; Candy, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-3ee6e7fac920f8bf496de6df280f9d682e0cc377fb7e75be9dbc6e6d7f82a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>gyrokinetics</topic><topic>transport</topic><topic>turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, N.T.</creatorcontrib><creatorcontrib>Rodriguez-Fernandez, P.</creatorcontrib><creatorcontrib>Holland, C.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, N.T.</au><au>Rodriguez-Fernandez, P.</au><au>Holland, C.</au><au>Candy, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>65</volume><issue>1</issue><spage>16002</spage><pages>16002-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez
et al
2022
Nucl. Fusion
62
076036), high fidelity, nonlinear gyrokinetic simulations performed with the CGYRO code (Candy
et al
2016
J. Comput. Phys.
324
73), were used to predict profiles of
T
i
,
T
e
, and
n
e
while including the effects of alpha heating, auxiliary power (NBI + ECH), collisional energy exchange, and radiation losses inside of
r
/
a
= 0.9. Predicted profiles and resulting energy confinement are found to produce fusion power and gain that are approximately consistent with mission goals (
P
fusion
=
500
MW at
Q
= 10) for the baseline scenario and exhibit energy confinement that is within 1
σ
of the H-mode energy confinement scaling. The power of the surrogate modeling technique is demonstrated through the prediction of alternative ITER scenarios with reduced computational cost. These scenarios include conditions with maximized fusion gain and an investigation of potential resonant magnetic perturbation (RMP) effects on performance with a minimal number of gyrokinetic profile iterations required (3–6). These predictions highlight the stiff ITG nature of the core turbulence predicted in the ITER baseline and demonstrate that
Q
>
17 conditions may be accessible by reducing auxiliary input power while operating in IBS conditions. Prediction of full kinetic profiles allowed for the projection of hydrogen isotope effects around ITER baseline conditions. The gyrokinetic fuel ion species was varied from H, D, and 50/50 D-T and kinetic profiles were predicted. Results indicate that a weak or negligible isotope effect will be observed to arise from core turbulence in IBS conditions. The resulting energy confinement, turbulence, and density peaking, and the implications for ITER operations will be discussed.</abstract><cop>IAEA</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ad8804</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6029-2306</orcidid><orcidid>https://orcid.org/0000-0002-8787-6309</orcidid><orcidid>https://orcid.org/0000-0003-3884-6485</orcidid><orcidid>https://orcid.org/0000-0002-7361-1131</orcidid><orcidid>https://orcid.org/0000000338846485</orcidid><orcidid>https://orcid.org/0000000273611131</orcidid><orcidid>https://orcid.org/0000000287876309</orcidid><orcidid>https://orcid.org/0000000160292306</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2025-01, Vol.65 (1), p.16002 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1741_4326_ad8804 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals |
subjects | gyrokinetics transport turbulence |
title | Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20performance%20and%20turbulence%20in%20ITER%20burning%20plasmas%20via%20nonlinear%20gyrokinetic%20profile%20prediction&rft.jtitle=Nuclear%20fusion&rft.au=Howard,%20N.T.&rft.date=2025-01-01&rft.volume=65&rft.issue=1&rft.spage=16002&rft.pages=16002-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ad8804&rft_dat=%3Ciop_cross%3Enfad8804%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a7f527adb3404bd798b2868a6ca70832&rfr_iscdi=true |