Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction

Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez et al 2022 Nucl. Fusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2025-01, Vol.65 (1), p.16002
Hauptverfasser: Howard, N.T., Rodriguez-Fernandez, P., Holland, C., Candy, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 16002
container_title Nuclear fusion
container_volume 65
creator Howard, N.T.
Rodriguez-Fernandez, P.
Holland, C.
Candy, J.
description Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez et al 2022 Nucl. Fusion 62 076036), high fidelity, nonlinear gyrokinetic simulations performed with the CGYRO code (Candy et al 2016 J. Comput. Phys. 324 73), were used to predict profiles of T i , T e , and n e while including the effects of alpha heating, auxiliary power (NBI + ECH), collisional energy exchange, and radiation losses inside of r / a = 0.9. Predicted profiles and resulting energy confinement are found to produce fusion power and gain that are approximately consistent with mission goals ( P fusion = 500 MW at Q  = 10) for the baseline scenario and exhibit energy confinement that is within 1 σ of the H-mode energy confinement scaling. The power of the surrogate modeling technique is demonstrated through the prediction of alternative ITER scenarios with reduced computational cost. These scenarios include conditions with maximized fusion gain and an investigation of potential resonant magnetic perturbation (RMP) effects on performance with a minimal number of gyrokinetic profile iterations required (3–6). These predictions highlight the stiff ITG nature of the core turbulence predicted in the ITER baseline and demonstrate that Q > 17 conditions may be accessible by reducing auxiliary input power while operating in IBS conditions. Prediction of full kinetic profiles allowed for the projection of hydrogen isotope effects around ITER baseline conditions. The gyrokinetic fuel ion species was varied from H, D, and 50/50 D-T and kinetic profiles were predicted. Results indicate that a weak or negligible isotope effect will be observed to arise from core turbulence in IBS conditions. The resulting energy confinement, turbulence, and density peaking, and the implications for ITER operations will be discussed.
doi_str_mv 10.1088/1741-4326/ad8804
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_ad8804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a7f527adb3404bd798b2868a6ca70832</doaj_id><sourcerecordid>nfad8804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-3ee6e7fac920f8bf496de6df280f9d682e0cc377fb7e75be9dbc6e6d7f82a223</originalsourceid><addsrcrecordid>eNp1UcFu1DAQtRCVupTee7Q4E-o4ju0cUVVgpUogtHdrbI8XL1k7srNI_XsSAr1xmpmnN--N5hFy17IPLdP6vlWibUTH5T14rZl4RXYv0GuyY4wPTd-3_TV5U-uJsVa0Xbcj528FfXRzzInmQCcsIZczJIcUkqfzpdjLiOsYE90fHr9TeykppiOdRqhnqPRXBJpyGmNCKPT4XPLPpZ2jo1PJIY641H8Wb8lVgLHi7d96Qw6fHg8PX5qnr5_3Dx-fGscHPTcdokQVwA2cBW2DGKRH6QPXLAxeao7MuU6pYBWq3uLgrZMLQQXNgfPuhuw3WZ_hZKYSz1CeTYZo_gC5HA2U5cIRDajQcwXedoIJ69WgLddSg3SgmO5WrXebVq5zNNXFGd0Pl1NCNxsulFS9WEhsI7mSay0YXkxbZtZ4zJqFWbMwWzzLyvttJebJnPLy1OUh_6f_BiXIktQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><creator>Howard, N.T. ; Rodriguez-Fernandez, P. ; Holland, C. ; Candy, J.</creator><creatorcontrib>Howard, N.T. ; Rodriguez-Fernandez, P. ; Holland, C. ; Candy, J.</creatorcontrib><description>Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez et al 2022 Nucl. Fusion 62 076036), high fidelity, nonlinear gyrokinetic simulations performed with the CGYRO code (Candy et al 2016 J. Comput. Phys. 324 73), were used to predict profiles of T i , T e , and n e while including the effects of alpha heating, auxiliary power (NBI + ECH), collisional energy exchange, and radiation losses inside of r / a = 0.9. Predicted profiles and resulting energy confinement are found to produce fusion power and gain that are approximately consistent with mission goals ( P fusion = 500 MW at Q  = 10) for the baseline scenario and exhibit energy confinement that is within 1 σ of the H-mode energy confinement scaling. The power of the surrogate modeling technique is demonstrated through the prediction of alternative ITER scenarios with reduced computational cost. These scenarios include conditions with maximized fusion gain and an investigation of potential resonant magnetic perturbation (RMP) effects on performance with a minimal number of gyrokinetic profile iterations required (3–6). These predictions highlight the stiff ITG nature of the core turbulence predicted in the ITER baseline and demonstrate that Q &gt; 17 conditions may be accessible by reducing auxiliary input power while operating in IBS conditions. Prediction of full kinetic profiles allowed for the projection of hydrogen isotope effects around ITER baseline conditions. The gyrokinetic fuel ion species was varied from H, D, and 50/50 D-T and kinetic profiles were predicted. Results indicate that a weak or negligible isotope effect will be observed to arise from core turbulence in IBS conditions. The resulting energy confinement, turbulence, and density peaking, and the implications for ITER operations will be discussed.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ad8804</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IAEA: IOP Publishing</publisher><subject>gyrokinetics ; transport ; turbulence</subject><ispartof>Nuclear fusion, 2025-01, Vol.65 (1), p.16002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-3ee6e7fac920f8bf496de6df280f9d682e0cc377fb7e75be9dbc6e6d7f82a223</cites><orcidid>0000-0001-6029-2306 ; 0000-0002-8787-6309 ; 0000-0003-3884-6485 ; 0000-0002-7361-1131 ; 0000000338846485 ; 0000000273611131 ; 0000000287876309 ; 0000000160292306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ad8804/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2095,27903,27904,38869,53846</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2476754$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Howard, N.T.</creatorcontrib><creatorcontrib>Rodriguez-Fernandez, P.</creatorcontrib><creatorcontrib>Holland, C.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><title>Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez et al 2022 Nucl. Fusion 62 076036), high fidelity, nonlinear gyrokinetic simulations performed with the CGYRO code (Candy et al 2016 J. Comput. Phys. 324 73), were used to predict profiles of T i , T e , and n e while including the effects of alpha heating, auxiliary power (NBI + ECH), collisional energy exchange, and radiation losses inside of r / a = 0.9. Predicted profiles and resulting energy confinement are found to produce fusion power and gain that are approximately consistent with mission goals ( P fusion = 500 MW at Q  = 10) for the baseline scenario and exhibit energy confinement that is within 1 σ of the H-mode energy confinement scaling. The power of the surrogate modeling technique is demonstrated through the prediction of alternative ITER scenarios with reduced computational cost. These scenarios include conditions with maximized fusion gain and an investigation of potential resonant magnetic perturbation (RMP) effects on performance with a minimal number of gyrokinetic profile iterations required (3–6). These predictions highlight the stiff ITG nature of the core turbulence predicted in the ITER baseline and demonstrate that Q &gt; 17 conditions may be accessible by reducing auxiliary input power while operating in IBS conditions. Prediction of full kinetic profiles allowed for the projection of hydrogen isotope effects around ITER baseline conditions. The gyrokinetic fuel ion species was varied from H, D, and 50/50 D-T and kinetic profiles were predicted. Results indicate that a weak or negligible isotope effect will be observed to arise from core turbulence in IBS conditions. The resulting energy confinement, turbulence, and density peaking, and the implications for ITER operations will be discussed.</description><subject>gyrokinetics</subject><subject>transport</subject><subject>turbulence</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UcFu1DAQtRCVupTee7Q4E-o4ju0cUVVgpUogtHdrbI8XL1k7srNI_XsSAr1xmpmnN--N5hFy17IPLdP6vlWibUTH5T14rZl4RXYv0GuyY4wPTd-3_TV5U-uJsVa0Xbcj528FfXRzzInmQCcsIZczJIcUkqfzpdjLiOsYE90fHr9TeykppiOdRqhnqPRXBJpyGmNCKPT4XPLPpZ2jo1PJIY641H8Wb8lVgLHi7d96Qw6fHg8PX5qnr5_3Dx-fGscHPTcdokQVwA2cBW2DGKRH6QPXLAxeao7MuU6pYBWq3uLgrZMLQQXNgfPuhuw3WZ_hZKYSz1CeTYZo_gC5HA2U5cIRDajQcwXedoIJ69WgLddSg3SgmO5WrXebVq5zNNXFGd0Pl1NCNxsulFS9WEhsI7mSay0YXkxbZtZ4zJqFWbMwWzzLyvttJebJnPLy1OUh_6f_BiXIktQ</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Howard, N.T.</creator><creator>Rodriguez-Fernandez, P.</creator><creator>Holland, C.</creator><creator>Candy, J.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6029-2306</orcidid><orcidid>https://orcid.org/0000-0002-8787-6309</orcidid><orcidid>https://orcid.org/0000-0003-3884-6485</orcidid><orcidid>https://orcid.org/0000-0002-7361-1131</orcidid><orcidid>https://orcid.org/0000000338846485</orcidid><orcidid>https://orcid.org/0000000273611131</orcidid><orcidid>https://orcid.org/0000000287876309</orcidid><orcidid>https://orcid.org/0000000160292306</orcidid></search><sort><creationdate>20250101</creationdate><title>Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction</title><author>Howard, N.T. ; Rodriguez-Fernandez, P. ; Holland, C. ; Candy, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-3ee6e7fac920f8bf496de6df280f9d682e0cc377fb7e75be9dbc6e6d7f82a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>gyrokinetics</topic><topic>transport</topic><topic>turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, N.T.</creatorcontrib><creatorcontrib>Rodriguez-Fernandez, P.</creatorcontrib><creatorcontrib>Holland, C.</creatorcontrib><creatorcontrib>Candy, J.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, N.T.</au><au>Rodriguez-Fernandez, P.</au><au>Holland, C.</au><au>Candy, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>65</volume><issue>1</issue><spage>16002</spage><pages>16002-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Burning plasma performance, transport, and the effect of hydrogen isotope (H, D, D-T fuel mix) on confinement has been predicted for ITER baseline scenario (IBS) conditions using nonlinear gyrokinetic profile predictions. Accelerated by surrogate modeling (Rodriguez-Fernandez et al 2022 Nucl. Fusion 62 076036), high fidelity, nonlinear gyrokinetic simulations performed with the CGYRO code (Candy et al 2016 J. Comput. Phys. 324 73), were used to predict profiles of T i , T e , and n e while including the effects of alpha heating, auxiliary power (NBI + ECH), collisional energy exchange, and radiation losses inside of r / a = 0.9. Predicted profiles and resulting energy confinement are found to produce fusion power and gain that are approximately consistent with mission goals ( P fusion = 500 MW at Q  = 10) for the baseline scenario and exhibit energy confinement that is within 1 σ of the H-mode energy confinement scaling. The power of the surrogate modeling technique is demonstrated through the prediction of alternative ITER scenarios with reduced computational cost. These scenarios include conditions with maximized fusion gain and an investigation of potential resonant magnetic perturbation (RMP) effects on performance with a minimal number of gyrokinetic profile iterations required (3–6). These predictions highlight the stiff ITG nature of the core turbulence predicted in the ITER baseline and demonstrate that Q &gt; 17 conditions may be accessible by reducing auxiliary input power while operating in IBS conditions. Prediction of full kinetic profiles allowed for the projection of hydrogen isotope effects around ITER baseline conditions. The gyrokinetic fuel ion species was varied from H, D, and 50/50 D-T and kinetic profiles were predicted. Results indicate that a weak or negligible isotope effect will be observed to arise from core turbulence in IBS conditions. The resulting energy confinement, turbulence, and density peaking, and the implications for ITER operations will be discussed.</abstract><cop>IAEA</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ad8804</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6029-2306</orcidid><orcidid>https://orcid.org/0000-0002-8787-6309</orcidid><orcidid>https://orcid.org/0000-0003-3884-6485</orcidid><orcidid>https://orcid.org/0000-0002-7361-1131</orcidid><orcidid>https://orcid.org/0000000338846485</orcidid><orcidid>https://orcid.org/0000000273611131</orcidid><orcidid>https://orcid.org/0000000287876309</orcidid><orcidid>https://orcid.org/0000000160292306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2025-01, Vol.65 (1), p.16002
issn 0029-5515
1741-4326
language eng
recordid cdi_crossref_primary_10_1088_1741_4326_ad8804
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals
subjects gyrokinetics
transport
turbulence
title Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20performance%20and%20turbulence%20in%20ITER%20burning%20plasmas%20via%20nonlinear%20gyrokinetic%20profile%20prediction&rft.jtitle=Nuclear%20fusion&rft.au=Howard,%20N.T.&rft.date=2025-01-01&rft.volume=65&rft.issue=1&rft.spage=16002&rft.pages=16002-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ad8804&rft_dat=%3Ciop_cross%3Enfad8804%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a7f527adb3404bd798b2868a6ca70832&rfr_iscdi=true