Characterization of isotope effect on ion internal transport barrier and its parameter dependence in the Large Helical Device

In this paper, the background physics of the isotope effects in the ion internal transport barrier (ITB) are discussed in detail. An heuristic criterion for the ITB strength is defined based on the nonlinear dependence of the ion thermal diffusivity on the local ion temperature in the L-mode phase....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2021-12, Vol.61 (12), p.126013
Hauptverfasser: Kobayashi, T., Takahashi, H., Nagaoka, K., Tanaka, K., Seki, R., Yamaguchi, H., Nakata, M., Sasaki, M., Yoshinuma, M., Ida, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 126013
container_title Nuclear fusion
container_volume 61
creator Kobayashi, T.
Takahashi, H.
Nagaoka, K.
Tanaka, K.
Seki, R.
Yamaguchi, H.
Nakata, M.
Sasaki, M.
Yoshinuma, M.
Ida, K.
description In this paper, the background physics of the isotope effects in the ion internal transport barrier (ITB) are discussed in detail. An heuristic criterion for the ITB strength is defined based on the nonlinear dependence of the ion thermal diffusivity on the local ion temperature in the L-mode phase. Comparing deuterium plasmas and hydrogen plasmas, two isotope effects on the ion ITB are clarified: stronger ITBs formed in the deuterium plasmas and an ITB concomitant edge confinement degradation in the hydrogen plasmas. Principal component analysis reveals that the ion ITB becomes strong when a high input power normalized by the line averaged electron density is applied and electron density profile is peaked. A gyrokinetic simulation suggests that the ITB profile is determined by the ion temperature gradient driven turbulence, while the way the profile saturates in L-mode plasmas is unknown. In the electron density turbulence behavior, a branch transition is observed, where the increasing trend in turbulence amplitude against the ITB strength is flipped to a decreasing trend across the ITB formation. The radial electric field structure is measured by the charge exchange recombination spectroscopy system. It is found that the radial electric field shear plays a minor role in determining the ITB strength.
doi_str_mv 10.1088/1741-4326/ac298f
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_ac298f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nfac298f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-bea42d58fd08cffb099bd800d56f145709d2572e4a9f75faa66690907fc2b9243</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3j7l5cW2STbKbo9RPKHjRc8gmE5vS7i5JFBT8381S8STCwMCb9x7MD6FzSq4oadsFbTiteM3kwlimWn-AZr_SIZoRwlQlBBXH6CSlDSGU07qeoa_l2kRjM8TwaXIYejx4HNKQhxEweA824yJOh9AXV2-2OEfTp3GIGXcmxgARm97hkBMeS9cOig07GKF30FsoOZzXgFcmvgJ-gG2wpeMG3oOFU3TkzTbB2c-eo5e72-flQ7V6un9cXq8qyyXPVQeGMyda70hrve-IUp1rCXFCespFQ5RjomHAjfKN8MZIKRVRpPGWdYrxeo7IvtfGIaUIXo8x7Ez80JToCZ-eWOmJld7jK5HLfSQMo94Mb9Pn6T_7xR_23mtJNWVlJKG1Hp2vvwHMjoB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of isotope effect on ion internal transport barrier and its parameter dependence in the Large Helical Device</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kobayashi, T. ; Takahashi, H. ; Nagaoka, K. ; Tanaka, K. ; Seki, R. ; Yamaguchi, H. ; Nakata, M. ; Sasaki, M. ; Yoshinuma, M. ; Ida, K.</creator><creatorcontrib>Kobayashi, T. ; Takahashi, H. ; Nagaoka, K. ; Tanaka, K. ; Seki, R. ; Yamaguchi, H. ; Nakata, M. ; Sasaki, M. ; Yoshinuma, M. ; Ida, K.</creatorcontrib><description>In this paper, the background physics of the isotope effects in the ion internal transport barrier (ITB) are discussed in detail. An heuristic criterion for the ITB strength is defined based on the nonlinear dependence of the ion thermal diffusivity on the local ion temperature in the L-mode phase. Comparing deuterium plasmas and hydrogen plasmas, two isotope effects on the ion ITB are clarified: stronger ITBs formed in the deuterium plasmas and an ITB concomitant edge confinement degradation in the hydrogen plasmas. Principal component analysis reveals that the ion ITB becomes strong when a high input power normalized by the line averaged electron density is applied and electron density profile is peaked. A gyrokinetic simulation suggests that the ITB profile is determined by the ion temperature gradient driven turbulence, while the way the profile saturates in L-mode plasmas is unknown. In the electron density turbulence behavior, a branch transition is observed, where the increasing trend in turbulence amplitude against the ITB strength is flipped to a decreasing trend across the ITB formation. The radial electric field structure is measured by the charge exchange recombination spectroscopy system. It is found that the radial electric field shear plays a minor role in determining the ITB strength.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ac298f</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>internal transport barrier ; isotope effect ; radial electric field ; stellarators ; turbulence</subject><ispartof>Nuclear fusion, 2021-12, Vol.61 (12), p.126013</ispartof><rights>2021 The Author(s). Published on behalf of IAEA by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-bea42d58fd08cffb099bd800d56f145709d2572e4a9f75faa66690907fc2b9243</citedby><cites>FETCH-LOGICAL-c464t-bea42d58fd08cffb099bd800d56f145709d2572e4a9f75faa66690907fc2b9243</cites><orcidid>0000-0001-5669-1937 ; 0000-0002-5364-805X ; 0000-0001-6984-9174 ; 0000-0002-1606-3204 ; 0000-0003-2693-4859 ; 0000-0001-6835-1569 ; 0000-0002-0585-4561 ; 0000-0002-1177-3370 ; 0000-0002-5892-6047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ac298f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Kobayashi, T.</creatorcontrib><creatorcontrib>Takahashi, H.</creatorcontrib><creatorcontrib>Nagaoka, K.</creatorcontrib><creatorcontrib>Tanaka, K.</creatorcontrib><creatorcontrib>Seki, R.</creatorcontrib><creatorcontrib>Yamaguchi, H.</creatorcontrib><creatorcontrib>Nakata, M.</creatorcontrib><creatorcontrib>Sasaki, M.</creatorcontrib><creatorcontrib>Yoshinuma, M.</creatorcontrib><creatorcontrib>Ida, K.</creatorcontrib><title>Characterization of isotope effect on ion internal transport barrier and its parameter dependence in the Large Helical Device</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>In this paper, the background physics of the isotope effects in the ion internal transport barrier (ITB) are discussed in detail. An heuristic criterion for the ITB strength is defined based on the nonlinear dependence of the ion thermal diffusivity on the local ion temperature in the L-mode phase. Comparing deuterium plasmas and hydrogen plasmas, two isotope effects on the ion ITB are clarified: stronger ITBs formed in the deuterium plasmas and an ITB concomitant edge confinement degradation in the hydrogen plasmas. Principal component analysis reveals that the ion ITB becomes strong when a high input power normalized by the line averaged electron density is applied and electron density profile is peaked. A gyrokinetic simulation suggests that the ITB profile is determined by the ion temperature gradient driven turbulence, while the way the profile saturates in L-mode plasmas is unknown. In the electron density turbulence behavior, a branch transition is observed, where the increasing trend in turbulence amplitude against the ITB strength is flipped to a decreasing trend across the ITB formation. The radial electric field structure is measured by the charge exchange recombination spectroscopy system. It is found that the radial electric field shear plays a minor role in determining the ITB strength.</description><subject>internal transport barrier</subject><subject>isotope effect</subject><subject>radial electric field</subject><subject>stellarators</subject><subject>turbulence</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kM1LAzEQxYMoWKt3j7l5cW2STbKbo9RPKHjRc8gmE5vS7i5JFBT8381S8STCwMCb9x7MD6FzSq4oadsFbTiteM3kwlimWn-AZr_SIZoRwlQlBBXH6CSlDSGU07qeoa_l2kRjM8TwaXIYejx4HNKQhxEweA824yJOh9AXV2-2OEfTp3GIGXcmxgARm97hkBMeS9cOig07GKF30FsoOZzXgFcmvgJ-gG2wpeMG3oOFU3TkzTbB2c-eo5e72-flQ7V6un9cXq8qyyXPVQeGMyda70hrve-IUp1rCXFCespFQ5RjomHAjfKN8MZIKRVRpPGWdYrxeo7IvtfGIaUIXo8x7Ez80JToCZ-eWOmJld7jK5HLfSQMo94Mb9Pn6T_7xR_23mtJNWVlJKG1Hp2vvwHMjoB6</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kobayashi, T.</creator><creator>Takahashi, H.</creator><creator>Nagaoka, K.</creator><creator>Tanaka, K.</creator><creator>Seki, R.</creator><creator>Yamaguchi, H.</creator><creator>Nakata, M.</creator><creator>Sasaki, M.</creator><creator>Yoshinuma, M.</creator><creator>Ida, K.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5669-1937</orcidid><orcidid>https://orcid.org/0000-0002-5364-805X</orcidid><orcidid>https://orcid.org/0000-0001-6984-9174</orcidid><orcidid>https://orcid.org/0000-0002-1606-3204</orcidid><orcidid>https://orcid.org/0000-0003-2693-4859</orcidid><orcidid>https://orcid.org/0000-0001-6835-1569</orcidid><orcidid>https://orcid.org/0000-0002-0585-4561</orcidid><orcidid>https://orcid.org/0000-0002-1177-3370</orcidid><orcidid>https://orcid.org/0000-0002-5892-6047</orcidid></search><sort><creationdate>20211201</creationdate><title>Characterization of isotope effect on ion internal transport barrier and its parameter dependence in the Large Helical Device</title><author>Kobayashi, T. ; Takahashi, H. ; Nagaoka, K. ; Tanaka, K. ; Seki, R. ; Yamaguchi, H. ; Nakata, M. ; Sasaki, M. ; Yoshinuma, M. ; Ida, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-bea42d58fd08cffb099bd800d56f145709d2572e4a9f75faa66690907fc2b9243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>internal transport barrier</topic><topic>isotope effect</topic><topic>radial electric field</topic><topic>stellarators</topic><topic>turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, T.</creatorcontrib><creatorcontrib>Takahashi, H.</creatorcontrib><creatorcontrib>Nagaoka, K.</creatorcontrib><creatorcontrib>Tanaka, K.</creatorcontrib><creatorcontrib>Seki, R.</creatorcontrib><creatorcontrib>Yamaguchi, H.</creatorcontrib><creatorcontrib>Nakata, M.</creatorcontrib><creatorcontrib>Sasaki, M.</creatorcontrib><creatorcontrib>Yoshinuma, M.</creatorcontrib><creatorcontrib>Ida, K.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, T.</au><au>Takahashi, H.</au><au>Nagaoka, K.</au><au>Tanaka, K.</au><au>Seki, R.</au><au>Yamaguchi, H.</au><au>Nakata, M.</au><au>Sasaki, M.</au><au>Yoshinuma, M.</au><au>Ida, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of isotope effect on ion internal transport barrier and its parameter dependence in the Large Helical Device</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>61</volume><issue>12</issue><spage>126013</spage><pages>126013-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>In this paper, the background physics of the isotope effects in the ion internal transport barrier (ITB) are discussed in detail. An heuristic criterion for the ITB strength is defined based on the nonlinear dependence of the ion thermal diffusivity on the local ion temperature in the L-mode phase. Comparing deuterium plasmas and hydrogen plasmas, two isotope effects on the ion ITB are clarified: stronger ITBs formed in the deuterium plasmas and an ITB concomitant edge confinement degradation in the hydrogen plasmas. Principal component analysis reveals that the ion ITB becomes strong when a high input power normalized by the line averaged electron density is applied and electron density profile is peaked. A gyrokinetic simulation suggests that the ITB profile is determined by the ion temperature gradient driven turbulence, while the way the profile saturates in L-mode plasmas is unknown. In the electron density turbulence behavior, a branch transition is observed, where the increasing trend in turbulence amplitude against the ITB strength is flipped to a decreasing trend across the ITB formation. The radial electric field structure is measured by the charge exchange recombination spectroscopy system. It is found that the radial electric field shear plays a minor role in determining the ITB strength.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ac298f</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5669-1937</orcidid><orcidid>https://orcid.org/0000-0002-5364-805X</orcidid><orcidid>https://orcid.org/0000-0001-6984-9174</orcidid><orcidid>https://orcid.org/0000-0002-1606-3204</orcidid><orcidid>https://orcid.org/0000-0003-2693-4859</orcidid><orcidid>https://orcid.org/0000-0001-6835-1569</orcidid><orcidid>https://orcid.org/0000-0002-0585-4561</orcidid><orcidid>https://orcid.org/0000-0002-1177-3370</orcidid><orcidid>https://orcid.org/0000-0002-5892-6047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2021-12, Vol.61 (12), p.126013
issn 0029-5515
1741-4326
language eng
recordid cdi_crossref_primary_10_1088_1741_4326_ac298f
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects internal transport barrier
isotope effect
radial electric field
stellarators
turbulence
title Characterization of isotope effect on ion internal transport barrier and its parameter dependence in the Large Helical Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20isotope%20effect%20on%20ion%20internal%20transport%20barrier%20and%20its%20parameter%20dependence%20in%20the%20Large%20Helical%20Device&rft.jtitle=Nuclear%20fusion&rft.au=Kobayashi,%20T.&rft.date=2021-12-01&rft.volume=61&rft.issue=12&rft.spage=126013&rft.pages=126013-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ac298f&rft_dat=%3Ciop_cross%3Enfac298f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true