Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms

In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2020-10, Vol.60 (10), p.106011
Hauptverfasser: Hodille, E.A., Markelj, S., Pecovnik, M., Ajmalghan, M, Piazza, Z.A., Ferro, Y., Schwarz-Selinger, T., Grisolia, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 106011
container_title Nuclear fusion
container_volume 60
creator Hodille, E.A.
Markelj, S.
Pecovnik, M.
Ajmalghan, M
Piazza, Z.A.
Ferro, Y.
Schwarz-Selinger, T.
Grisolia, C.
description In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuously on the hydrogen surface coverage. A steady-state model is developed to derive these activation energies from experimental data. The newly developed coverage dependent activation energies are then implemented in the non steady-state rate-equation code MHIMS. Published experimental results on D uptake and retention of self-damaged tungsten exposed to 0.28 eV deuterium atoms at different temperatures ranging from 450 K to 1000 K can be successfully described with this approach. Finally, the steady-state model is applied to determine surface concentration, bulk concentration and migration depths of hydrogen isotopes in tungsten exposed to various atomic fluxes and temperatures ranging from milder conditions in laboratory experiments to divertor strike point conditions in tokamaks.
doi_str_mv 10.1088/1741-4326/aba454
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_aba454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02901341v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-aa0724e4c2399b1e0a505e5db7a14caa12052fcda9d4128021ceceb084cf021a3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRsFbvHvcqGLufNjmWolYseNGbsLxsXpotzW7ZTSv-9yZEevP0mGHmwfwIueXsgbM8n_G54pmS4nEGJSitzsjkZJ2TCWOiyLTm-pJcpbRljCsu5YR8vTmPnbO0DRXuaB0ibX6qGDboKZQpxH3ngqfO0-7gN6nr7W_XNdSGI0bYIK1wj75C39F0iDVYpC3aBrxLbbomFzXsEt783Sn5fH76WK6y9fvL63KxzqwsZJcBsLlQqKyQRVFyZKCZRl2Vc-DKAnDBtKhtBUWluMiZ4BYtlixXtu4FyCm5G_82sDP76FqIPyaAM6vF2gxeP55xqfiR91k2Zm0MKUWsTwXOzEDSDNjMgM2MJPvK_VhxYW-24RB9P-b_-C8aR3W8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms</title><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Hodille, E.A. ; Markelj, S. ; Pecovnik, M. ; Ajmalghan, M ; Piazza, Z.A. ; Ferro, Y. ; Schwarz-Selinger, T. ; Grisolia, C.</creator><creatorcontrib>Hodille, E.A. ; Markelj, S. ; Pecovnik, M. ; Ajmalghan, M ; Piazza, Z.A. ; Ferro, Y. ; Schwarz-Selinger, T. ; Grisolia, C.</creatorcontrib><description>In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuously on the hydrogen surface coverage. A steady-state model is developed to derive these activation energies from experimental data. The newly developed coverage dependent activation energies are then implemented in the non steady-state rate-equation code MHIMS. Published experimental results on D uptake and retention of self-damaged tungsten exposed to 0.28 eV deuterium atoms at different temperatures ranging from 450 K to 1000 K can be successfully described with this approach. Finally, the steady-state model is applied to determine surface concentration, bulk concentration and migration depths of hydrogen isotopes in tungsten exposed to various atomic fluxes and temperatures ranging from milder conditions in laboratory experiments to divertor strike point conditions in tokamaks.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/aba454</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Chemical Sciences ; Computer Science ; Condensed Matter ; deuterium ; fuel retention ; Material chemistry ; Materials Science ; Modeling and Simulation ; Physics ; rate-equation modeling ; surface mechanisms ; tungsten</subject><ispartof>Nuclear fusion, 2020-10, Vol.60 (10), p.106011</ispartof><rights>EURATOM 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-aa0724e4c2399b1e0a505e5db7a14caa12052fcda9d4128021ceceb084cf021a3</citedby><cites>FETCH-LOGICAL-c393t-aa0724e4c2399b1e0a505e5db7a14caa12052fcda9d4128021ceceb084cf021a3</cites><orcidid>0000-0002-6603-4006 ; 0000-0002-0859-390X ; 0000-0002-3178-937X ; 0000-0002-3038-9593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/aba454/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02901341$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hodille, E.A.</creatorcontrib><creatorcontrib>Markelj, S.</creatorcontrib><creatorcontrib>Pecovnik, M.</creatorcontrib><creatorcontrib>Ajmalghan, M</creatorcontrib><creatorcontrib>Piazza, Z.A.</creatorcontrib><creatorcontrib>Ferro, Y.</creatorcontrib><creatorcontrib>Schwarz-Selinger, T.</creatorcontrib><creatorcontrib>Grisolia, C.</creatorcontrib><title>Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuously on the hydrogen surface coverage. A steady-state model is developed to derive these activation energies from experimental data. The newly developed coverage dependent activation energies are then implemented in the non steady-state rate-equation code MHIMS. Published experimental results on D uptake and retention of self-damaged tungsten exposed to 0.28 eV deuterium atoms at different temperatures ranging from 450 K to 1000 K can be successfully described with this approach. Finally, the steady-state model is applied to determine surface concentration, bulk concentration and migration depths of hydrogen isotopes in tungsten exposed to various atomic fluxes and temperatures ranging from milder conditions in laboratory experiments to divertor strike point conditions in tokamaks.</description><subject>Chemical Sciences</subject><subject>Computer Science</subject><subject>Condensed Matter</subject><subject>deuterium</subject><subject>fuel retention</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Modeling and Simulation</subject><subject>Physics</subject><subject>rate-equation modeling</subject><subject>surface mechanisms</subject><subject>tungsten</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AUxBdRsFbvHvcqGLufNjmWolYseNGbsLxsXpotzW7ZTSv-9yZEevP0mGHmwfwIueXsgbM8n_G54pmS4nEGJSitzsjkZJ2TCWOiyLTm-pJcpbRljCsu5YR8vTmPnbO0DRXuaB0ibX6qGDboKZQpxH3ngqfO0-7gN6nr7W_XNdSGI0bYIK1wj75C39F0iDVYpC3aBrxLbbomFzXsEt783Sn5fH76WK6y9fvL63KxzqwsZJcBsLlQqKyQRVFyZKCZRl2Vc-DKAnDBtKhtBUWluMiZ4BYtlixXtu4FyCm5G_82sDP76FqIPyaAM6vF2gxeP55xqfiR91k2Zm0MKUWsTwXOzEDSDNjMgM2MJPvK_VhxYW-24RB9P-b_-C8aR3W8</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hodille, E.A.</creator><creator>Markelj, S.</creator><creator>Pecovnik, M.</creator><creator>Ajmalghan, M</creator><creator>Piazza, Z.A.</creator><creator>Ferro, Y.</creator><creator>Schwarz-Selinger, T.</creator><creator>Grisolia, C.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6603-4006</orcidid><orcidid>https://orcid.org/0000-0002-0859-390X</orcidid><orcidid>https://orcid.org/0000-0002-3178-937X</orcidid><orcidid>https://orcid.org/0000-0002-3038-9593</orcidid></search><sort><creationdate>20201001</creationdate><title>Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms</title><author>Hodille, E.A. ; Markelj, S. ; Pecovnik, M. ; Ajmalghan, M ; Piazza, Z.A. ; Ferro, Y. ; Schwarz-Selinger, T. ; Grisolia, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-aa0724e4c2399b1e0a505e5db7a14caa12052fcda9d4128021ceceb084cf021a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><topic>Computer Science</topic><topic>Condensed Matter</topic><topic>deuterium</topic><topic>fuel retention</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Modeling and Simulation</topic><topic>Physics</topic><topic>rate-equation modeling</topic><topic>surface mechanisms</topic><topic>tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodille, E.A.</creatorcontrib><creatorcontrib>Markelj, S.</creatorcontrib><creatorcontrib>Pecovnik, M.</creatorcontrib><creatorcontrib>Ajmalghan, M</creatorcontrib><creatorcontrib>Piazza, Z.A.</creatorcontrib><creatorcontrib>Ferro, Y.</creatorcontrib><creatorcontrib>Schwarz-Selinger, T.</creatorcontrib><creatorcontrib>Grisolia, C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodille, E.A.</au><au>Markelj, S.</au><au>Pecovnik, M.</au><au>Ajmalghan, M</au><au>Piazza, Z.A.</au><au>Ferro, Y.</au><au>Schwarz-Selinger, T.</au><au>Grisolia, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>60</volume><issue>10</issue><spage>106011</spage><pages>106011-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuously on the hydrogen surface coverage. A steady-state model is developed to derive these activation energies from experimental data. The newly developed coverage dependent activation energies are then implemented in the non steady-state rate-equation code MHIMS. Published experimental results on D uptake and retention of self-damaged tungsten exposed to 0.28 eV deuterium atoms at different temperatures ranging from 450 K to 1000 K can be successfully described with this approach. Finally, the steady-state model is applied to determine surface concentration, bulk concentration and migration depths of hydrogen isotopes in tungsten exposed to various atomic fluxes and temperatures ranging from milder conditions in laboratory experiments to divertor strike point conditions in tokamaks.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-4326/aba454</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6603-4006</orcidid><orcidid>https://orcid.org/0000-0002-0859-390X</orcidid><orcidid>https://orcid.org/0000-0002-3178-937X</orcidid><orcidid>https://orcid.org/0000-0002-3038-9593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2020-10, Vol.60 (10), p.106011
issn 0029-5515
1741-4326
language eng
recordid cdi_crossref_primary_10_1088_1741_4326_aba454
source Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Chemical Sciences
Computer Science
Condensed Matter
deuterium
fuel retention
Material chemistry
Materials Science
Modeling and Simulation
Physics
rate-equation modeling
surface mechanisms
tungsten
title Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20model%20for%20hydrogen%20absorption%20in%20tungsten%20with%20coverage%20dependent%20surface%20mechanisms&rft.jtitle=Nuclear%20fusion&rft.au=Hodille,%20E.A.&rft.date=2020-10-01&rft.volume=60&rft.issue=10&rft.spage=106011&rft.pages=106011-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/aba454&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02901341v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true