Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms
In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuou...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2020-10, Vol.60 (10), p.106011 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 106011 |
container_title | Nuclear fusion |
container_volume | 60 |
creator | Hodille, E.A. Markelj, S. Pecovnik, M. Ajmalghan, M Piazza, Z.A. Ferro, Y. Schwarz-Selinger, T. Grisolia, C. |
description | In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuously on the hydrogen surface coverage. A steady-state model is developed to derive these activation energies from experimental data. The newly developed coverage dependent activation energies are then implemented in the non steady-state rate-equation code MHIMS. Published experimental results on D uptake and retention of self-damaged tungsten exposed to 0.28 eV deuterium atoms at different temperatures ranging from 450 K to 1000 K can be successfully described with this approach. Finally, the steady-state model is applied to determine surface concentration, bulk concentration and migration depths of hydrogen isotopes in tungsten exposed to various atomic fluxes and temperatures ranging from milder conditions in laboratory experiments to divertor strike point conditions in tokamaks. |
doi_str_mv | 10.1088/1741-4326/aba454 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_aba454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02901341v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-aa0724e4c2399b1e0a505e5db7a14caa12052fcda9d4128021ceceb084cf021a3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRsFbvHvcqGLufNjmWolYseNGbsLxsXpotzW7ZTSv-9yZEevP0mGHmwfwIueXsgbM8n_G54pmS4nEGJSitzsjkZJ2TCWOiyLTm-pJcpbRljCsu5YR8vTmPnbO0DRXuaB0ibX6qGDboKZQpxH3ngqfO0-7gN6nr7W_XNdSGI0bYIK1wj75C39F0iDVYpC3aBrxLbbomFzXsEt783Sn5fH76WK6y9fvL63KxzqwsZJcBsLlQqKyQRVFyZKCZRl2Vc-DKAnDBtKhtBUWluMiZ4BYtlixXtu4FyCm5G_82sDP76FqIPyaAM6vF2gxeP55xqfiR91k2Zm0MKUWsTwXOzEDSDNjMgM2MJPvK_VhxYW-24RB9P-b_-C8aR3W8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms</title><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Hodille, E.A. ; Markelj, S. ; Pecovnik, M. ; Ajmalghan, M ; Piazza, Z.A. ; Ferro, Y. ; Schwarz-Selinger, T. ; Grisolia, C.</creator><creatorcontrib>Hodille, E.A. ; Markelj, S. ; Pecovnik, M. ; Ajmalghan, M ; Piazza, Z.A. ; Ferro, Y. ; Schwarz-Selinger, T. ; Grisolia, C.</creatorcontrib><description>In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuously on the hydrogen surface coverage. A steady-state model is developed to derive these activation energies from experimental data. The newly developed coverage dependent activation energies are then implemented in the non steady-state rate-equation code MHIMS. Published experimental results on D uptake and retention of self-damaged tungsten exposed to 0.28 eV deuterium atoms at different temperatures ranging from 450 K to 1000 K can be successfully described with this approach. Finally, the steady-state model is applied to determine surface concentration, bulk concentration and migration depths of hydrogen isotopes in tungsten exposed to various atomic fluxes and temperatures ranging from milder conditions in laboratory experiments to divertor strike point conditions in tokamaks.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/aba454</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Chemical Sciences ; Computer Science ; Condensed Matter ; deuterium ; fuel retention ; Material chemistry ; Materials Science ; Modeling and Simulation ; Physics ; rate-equation modeling ; surface mechanisms ; tungsten</subject><ispartof>Nuclear fusion, 2020-10, Vol.60 (10), p.106011</ispartof><rights>EURATOM 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-aa0724e4c2399b1e0a505e5db7a14caa12052fcda9d4128021ceceb084cf021a3</citedby><cites>FETCH-LOGICAL-c393t-aa0724e4c2399b1e0a505e5db7a14caa12052fcda9d4128021ceceb084cf021a3</cites><orcidid>0000-0002-6603-4006 ; 0000-0002-0859-390X ; 0000-0002-3178-937X ; 0000-0002-3038-9593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/aba454/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02901341$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hodille, E.A.</creatorcontrib><creatorcontrib>Markelj, S.</creatorcontrib><creatorcontrib>Pecovnik, M.</creatorcontrib><creatorcontrib>Ajmalghan, M</creatorcontrib><creatorcontrib>Piazza, Z.A.</creatorcontrib><creatorcontrib>Ferro, Y.</creatorcontrib><creatorcontrib>Schwarz-Selinger, T.</creatorcontrib><creatorcontrib>Grisolia, C.</creatorcontrib><title>Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuously on the hydrogen surface coverage. A steady-state model is developed to derive these activation energies from experimental data. The newly developed coverage dependent activation energies are then implemented in the non steady-state rate-equation code MHIMS. Published experimental results on D uptake and retention of self-damaged tungsten exposed to 0.28 eV deuterium atoms at different temperatures ranging from 450 K to 1000 K can be successfully described with this approach. Finally, the steady-state model is applied to determine surface concentration, bulk concentration and migration depths of hydrogen isotopes in tungsten exposed to various atomic fluxes and temperatures ranging from milder conditions in laboratory experiments to divertor strike point conditions in tokamaks.</description><subject>Chemical Sciences</subject><subject>Computer Science</subject><subject>Condensed Matter</subject><subject>deuterium</subject><subject>fuel retention</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Modeling and Simulation</subject><subject>Physics</subject><subject>rate-equation modeling</subject><subject>surface mechanisms</subject><subject>tungsten</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AUxBdRsFbvHvcqGLufNjmWolYseNGbsLxsXpotzW7ZTSv-9yZEevP0mGHmwfwIueXsgbM8n_G54pmS4nEGJSitzsjkZJ2TCWOiyLTm-pJcpbRljCsu5YR8vTmPnbO0DRXuaB0ibX6qGDboKZQpxH3ngqfO0-7gN6nr7W_XNdSGI0bYIK1wj75C39F0iDVYpC3aBrxLbbomFzXsEt783Sn5fH76WK6y9fvL63KxzqwsZJcBsLlQqKyQRVFyZKCZRl2Vc-DKAnDBtKhtBUWluMiZ4BYtlixXtu4FyCm5G_82sDP76FqIPyaAM6vF2gxeP55xqfiR91k2Zm0MKUWsTwXOzEDSDNjMgM2MJPvK_VhxYW-24RB9P-b_-C8aR3W8</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hodille, E.A.</creator><creator>Markelj, S.</creator><creator>Pecovnik, M.</creator><creator>Ajmalghan, M</creator><creator>Piazza, Z.A.</creator><creator>Ferro, Y.</creator><creator>Schwarz-Selinger, T.</creator><creator>Grisolia, C.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6603-4006</orcidid><orcidid>https://orcid.org/0000-0002-0859-390X</orcidid><orcidid>https://orcid.org/0000-0002-3178-937X</orcidid><orcidid>https://orcid.org/0000-0002-3038-9593</orcidid></search><sort><creationdate>20201001</creationdate><title>Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms</title><author>Hodille, E.A. ; Markelj, S. ; Pecovnik, M. ; Ajmalghan, M ; Piazza, Z.A. ; Ferro, Y. ; Schwarz-Selinger, T. ; Grisolia, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-aa0724e4c2399b1e0a505e5db7a14caa12052fcda9d4128021ceceb084cf021a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><topic>Computer Science</topic><topic>Condensed Matter</topic><topic>deuterium</topic><topic>fuel retention</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Modeling and Simulation</topic><topic>Physics</topic><topic>rate-equation modeling</topic><topic>surface mechanisms</topic><topic>tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodille, E.A.</creatorcontrib><creatorcontrib>Markelj, S.</creatorcontrib><creatorcontrib>Pecovnik, M.</creatorcontrib><creatorcontrib>Ajmalghan, M</creatorcontrib><creatorcontrib>Piazza, Z.A.</creatorcontrib><creatorcontrib>Ferro, Y.</creatorcontrib><creatorcontrib>Schwarz-Selinger, T.</creatorcontrib><creatorcontrib>Grisolia, C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodille, E.A.</au><au>Markelj, S.</au><au>Pecovnik, M.</au><au>Ajmalghan, M</au><au>Piazza, Z.A.</au><au>Ferro, Y.</au><au>Schwarz-Selinger, T.</au><au>Grisolia, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>60</volume><issue>10</issue><spage>106011</spage><pages>106011-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>In this work, a kinetic model is presented to describe hydrogen absorption and desorption from tungsten at different surface coverages. Activation energies for hydrogen absorption into the bulk and desorption from the surface of tungsten are modelled by functions that depend explicitly and continuously on the hydrogen surface coverage. A steady-state model is developed to derive these activation energies from experimental data. The newly developed coverage dependent activation energies are then implemented in the non steady-state rate-equation code MHIMS. Published experimental results on D uptake and retention of self-damaged tungsten exposed to 0.28 eV deuterium atoms at different temperatures ranging from 450 K to 1000 K can be successfully described with this approach. Finally, the steady-state model is applied to determine surface concentration, bulk concentration and migration depths of hydrogen isotopes in tungsten exposed to various atomic fluxes and temperatures ranging from milder conditions in laboratory experiments to divertor strike point conditions in tokamaks.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-4326/aba454</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6603-4006</orcidid><orcidid>https://orcid.org/0000-0002-0859-390X</orcidid><orcidid>https://orcid.org/0000-0002-3178-937X</orcidid><orcidid>https://orcid.org/0000-0002-3038-9593</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2020-10, Vol.60 (10), p.106011 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1741_4326_aba454 |
source | Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Chemical Sciences Computer Science Condensed Matter deuterium fuel retention Material chemistry Materials Science Modeling and Simulation Physics rate-equation modeling surface mechanisms tungsten |
title | Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20model%20for%20hydrogen%20absorption%20in%20tungsten%20with%20coverage%20dependent%20surface%20mechanisms&rft.jtitle=Nuclear%20fusion&rft.au=Hodille,%20E.A.&rft.date=2020-10-01&rft.volume=60&rft.issue=10&rft.spage=106011&rft.pages=106011-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/aba454&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02901341v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |