Prediction of Alfvén eigenmode energetic particle transport in ITER scenarios with a critical gradient model
A reduced 1D, local, critical-gradient model of energetic particle (EP) transport by Alfvén eigenmodes (AEs)-the TGLF-EP+Alpha model-is applied to a much-studied ITER base case and variations with lower plasma current and lower current penetration. The TGLF-EP+Alpha model is a highly reduced and com...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2020-01, Vol.60 (1), p.16032 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 16032 |
container_title | Nuclear fusion |
container_volume | 60 |
creator | Bass, E.M. Waltz, R.E. |
description | A reduced 1D, local, critical-gradient model of energetic particle (EP) transport by Alfvén eigenmodes (AEs)-the TGLF-EP+Alpha model-is applied to a much-studied ITER base case and variations with lower plasma current and lower current penetration. The TGLF-EP+Alpha model is a highly reduced and computationally inexpensive model of EP transport. Such a reduced critical-gradient model, while inapplicable to transport driven by strongly nonlinear or non-local abrupt events, is a valuable tool for scoping studies needed in scenario optimization for ITER and beyond. It relies on the assumption of critical-gradient AE transport with the critical EP density gradient determined by linear AE stability calculations in the TGLF gyro-Landau fluid code automated with the parallel-processed TGLF-EP wrapper. EP transport is treated with simultaneous drive of AEs by fusion-born alpha particles and fast ions born from a MeV neutral beam injection heating. The effect of simultaneous drive creates about 50% increased particle transport in both EP channels. High magnetic safety factor and low shear are generally destabilizing to AEs, but low shear tends to be more important. A tailored q-profile, steady-state-relevant scenario can reduce AE-induced EP redistribution by more than 25% over the ITER base case despite having half the total current. |
doi_str_mv | 10.1088/1741-4326/ab54fb |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_ab54fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nfab54fb</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-cd73f0204a434f09bbb2715194c693f695f80387aba5f243e25e378261c8fbb33</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKt7l8GFK8fmOpdlKVULBUXqOmQySZsyTYYkKj6Sz-GLOcOIK3F14Oc7B_4PgEuMbjEqyxkuGM4YJflM1pyZ-ghMfk_HYIIQqTLOMT8FZzHuEcIMUzoBh6egG6uS9Q56A-etefv6dFDbrXYH32ionQ5bnayCnQx9tBqmIF3sfEjQOrjaLJ9hVNrJYH2E7zbtoIQq2J6VLdwG2VjtEhzG2nNwYmQb9cVPTsHL3XKzeMjWj_erxXydKYpRylRTUIMIYpJRZlBV1zUpMMcVU3lFTV5xUyJaFrKW3BBGNeGaFiXJsSpNXVM6BVfjro_Jiqhs0mqnvHNaJYF51bOsh9AIqeBjDNqILtiDDB8CIzE4FYNAMQgUo9O-cjNWrO_E3r8G13_xH379B-6MyPuGQDhHlIiuMfQbX-mGYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of Alfvén eigenmode energetic particle transport in ITER scenarios with a critical gradient model</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bass, E.M. ; Waltz, R.E.</creator><creatorcontrib>Bass, E.M. ; Waltz, R.E. ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>A reduced 1D, local, critical-gradient model of energetic particle (EP) transport by Alfvén eigenmodes (AEs)-the TGLF-EP+Alpha model-is applied to a much-studied ITER base case and variations with lower plasma current and lower current penetration. The TGLF-EP+Alpha model is a highly reduced and computationally inexpensive model of EP transport. Such a reduced critical-gradient model, while inapplicable to transport driven by strongly nonlinear or non-local abrupt events, is a valuable tool for scoping studies needed in scenario optimization for ITER and beyond. It relies on the assumption of critical-gradient AE transport with the critical EP density gradient determined by linear AE stability calculations in the TGLF gyro-Landau fluid code automated with the parallel-processed TGLF-EP wrapper. EP transport is treated with simultaneous drive of AEs by fusion-born alpha particles and fast ions born from a MeV neutral beam injection heating. The effect of simultaneous drive creates about 50% increased particle transport in both EP channels. High magnetic safety factor and low shear are generally destabilizing to AEs, but low shear tends to be more important. A tailored q-profile, steady-state-relevant scenario can reduce AE-induced EP redistribution by more than 25% over the ITER base case despite having half the total current.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ab54fb</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Alfvén eigenmodes ; energetic particles ; ITER ; transport</subject><ispartof>Nuclear fusion, 2020-01, Vol.60 (1), p.16032</ispartof><rights>2019 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-cd73f0204a434f09bbb2715194c693f695f80387aba5f243e25e378261c8fbb33</citedby><cites>FETCH-LOGICAL-c310t-cd73f0204a434f09bbb2715194c693f695f80387aba5f243e25e378261c8fbb33</cites><orcidid>0000-0002-2167-283X ; 0000-0002-5203-4830 ; 000000022167283X ; 0000000252034830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ab54fb/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1597824$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bass, E.M.</creatorcontrib><creatorcontrib>Waltz, R.E.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>Prediction of Alfvén eigenmode energetic particle transport in ITER scenarios with a critical gradient model</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>A reduced 1D, local, critical-gradient model of energetic particle (EP) transport by Alfvén eigenmodes (AEs)-the TGLF-EP+Alpha model-is applied to a much-studied ITER base case and variations with lower plasma current and lower current penetration. The TGLF-EP+Alpha model is a highly reduced and computationally inexpensive model of EP transport. Such a reduced critical-gradient model, while inapplicable to transport driven by strongly nonlinear or non-local abrupt events, is a valuable tool for scoping studies needed in scenario optimization for ITER and beyond. It relies on the assumption of critical-gradient AE transport with the critical EP density gradient determined by linear AE stability calculations in the TGLF gyro-Landau fluid code automated with the parallel-processed TGLF-EP wrapper. EP transport is treated with simultaneous drive of AEs by fusion-born alpha particles and fast ions born from a MeV neutral beam injection heating. The effect of simultaneous drive creates about 50% increased particle transport in both EP channels. High magnetic safety factor and low shear are generally destabilizing to AEs, but low shear tends to be more important. A tailored q-profile, steady-state-relevant scenario can reduce AE-induced EP redistribution by more than 25% over the ITER base case despite having half the total current.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Alfvén eigenmodes</subject><subject>energetic particles</subject><subject>ITER</subject><subject>transport</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhYMoWKt7l8GFK8fmOpdlKVULBUXqOmQySZsyTYYkKj6Sz-GLOcOIK3F14Oc7B_4PgEuMbjEqyxkuGM4YJflM1pyZ-ghMfk_HYIIQqTLOMT8FZzHuEcIMUzoBh6egG6uS9Q56A-etefv6dFDbrXYH32ionQ5bnayCnQx9tBqmIF3sfEjQOrjaLJ9hVNrJYH2E7zbtoIQq2J6VLdwG2VjtEhzG2nNwYmQb9cVPTsHL3XKzeMjWj_erxXydKYpRylRTUIMIYpJRZlBV1zUpMMcVU3lFTV5xUyJaFrKW3BBGNeGaFiXJsSpNXVM6BVfjro_Jiqhs0mqnvHNaJYF51bOsh9AIqeBjDNqILtiDDB8CIzE4FYNAMQgUo9O-cjNWrO_E3r8G13_xH379B-6MyPuGQDhHlIiuMfQbX-mGYA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Bass, E.M.</creator><creator>Waltz, R.E.</creator><general>IOP Publishing</general><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2167-283X</orcidid><orcidid>https://orcid.org/0000-0002-5203-4830</orcidid><orcidid>https://orcid.org/000000022167283X</orcidid><orcidid>https://orcid.org/0000000252034830</orcidid></search><sort><creationdate>20200101</creationdate><title>Prediction of Alfvén eigenmode energetic particle transport in ITER scenarios with a critical gradient model</title><author>Bass, E.M. ; Waltz, R.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-cd73f0204a434f09bbb2715194c693f695f80387aba5f243e25e378261c8fbb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Alfvén eigenmodes</topic><topic>energetic particles</topic><topic>ITER</topic><topic>transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bass, E.M.</creatorcontrib><creatorcontrib>Waltz, R.E.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bass, E.M.</au><au>Waltz, R.E.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Alfvén eigenmode energetic particle transport in ITER scenarios with a critical gradient model</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>60</volume><issue>1</issue><spage>16032</spage><pages>16032-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>A reduced 1D, local, critical-gradient model of energetic particle (EP) transport by Alfvén eigenmodes (AEs)-the TGLF-EP+Alpha model-is applied to a much-studied ITER base case and variations with lower plasma current and lower current penetration. The TGLF-EP+Alpha model is a highly reduced and computationally inexpensive model of EP transport. Such a reduced critical-gradient model, while inapplicable to transport driven by strongly nonlinear or non-local abrupt events, is a valuable tool for scoping studies needed in scenario optimization for ITER and beyond. It relies on the assumption of critical-gradient AE transport with the critical EP density gradient determined by linear AE stability calculations in the TGLF gyro-Landau fluid code automated with the parallel-processed TGLF-EP wrapper. EP transport is treated with simultaneous drive of AEs by fusion-born alpha particles and fast ions born from a MeV neutral beam injection heating. The effect of simultaneous drive creates about 50% increased particle transport in both EP channels. High magnetic safety factor and low shear are generally destabilizing to AEs, but low shear tends to be more important. A tailored q-profile, steady-state-relevant scenario can reduce AE-induced EP redistribution by more than 25% over the ITER base case despite having half the total current.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ab54fb</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2167-283X</orcidid><orcidid>https://orcid.org/0000-0002-5203-4830</orcidid><orcidid>https://orcid.org/000000022167283X</orcidid><orcidid>https://orcid.org/0000000252034830</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2020-01, Vol.60 (1), p.16032 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1741_4326_ab54fb |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Alfvén eigenmodes energetic particles ITER transport |
title | Prediction of Alfvén eigenmode energetic particle transport in ITER scenarios with a critical gradient model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Alfv%C3%A9n%20eigenmode%20energetic%20particle%20transport%20in%20ITER%20scenarios%20with%20a%20critical%20gradient%20model&rft.jtitle=Nuclear%20fusion&rft.au=Bass,%20E.M.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2020-01-01&rft.volume=60&rft.issue=1&rft.spage=16032&rft.pages=16032-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ab54fb&rft_dat=%3Ciop_cross%3Enfab54fb%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |