Recent DIII-D advances in runaway electron measurement and model validation
Novel measurements and modeling of runaway electron (RE) dynamics in DIII-D have resolved experimental discrepancies and validated predictions for ITER, improving confidence that RE avoidance and mitigation can be predictably achieved. Considering RE formation, first experimental assessments of the...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2019-05, Vol.59 (6), p.66025 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 66025 |
container_title | Nuclear fusion |
container_volume | 59 |
creator | Paz-Soldan, C. Eidietis, N.W. Hollmann, E.M. Aleynikov, P. Carbajal, L. Heidbrink, W.W. Hoppe, M. Liu, C. Lvovskiy, A. Shiraki, D. Spong, D. Brennan, D.P. Cooper, C.M. del-Castillo-Negrete, D. Du, X. Embreus, O. Fulop, T. Herfindal, J. Moyer, R. Parks, P. Thome, K.E. |
description | Novel measurements and modeling of runaway electron (RE) dynamics in DIII-D have resolved experimental discrepancies and validated predictions for ITER, improving confidence that RE avoidance and mitigation can be predictably achieved. Considering RE formation, first experimental assessments of the RE seed current demonstrates that present hot-tail theories are not yet accurate and require improved treatment of the pellet dynamics. Novel measurements of kinetic instabilities in the MHz-range have been made in the RE formation phase, with the intensity of these modes correlated with previously unexplained empirical thresholds for RE generation. Controlled RE dissipation experiments in quiescent regimes have validated RE distribution function dependencies on collisional and synchrotron damping, both in terms of distribution function shape and dissipation rates. Measurements of RE bremsstrahlung and synchrotron emission are now used in tandem to resolve energy and pitch-angle effects. A resolution to long-standing dissipation anomalies in the quiescent regime is offered by taking into account kinetic instability effects on RE phase-space dynamics. Kinetic instabilities in the 100-200 MHz range are directly observed, though modeling finds the largest dissipation arises from GHz range instabilities that are beyond the reach of existing diagnostics. Kinetic instabilities are also observed in the mature post-disruption RE plateau phase, so long as the collisional damping rate is reduced with low-Z injection. Experiments with high-Z injection find that the dissipation rate saturates with injection quantity, likely due to neutral diffusion rates being slower than vertical instability rates in DIII-D. Considering the final loss, a 0D model for first-wall Joule heating is found to be in agreement with experiment, and controlled access to RE equilibria with edge safety factor of two identifies novel dynamics brought about by large-scale kink instabilities. These dynamics are typified by fast (tens of microseconds) RE loss rates without RE beam regeneration. The above measurements and comparison with theory represent significant advances in the understanding of RE dynamics and indicate possible new opportunities for RE avoidance or mitigation via kinetic instabilities. |
doi_str_mv | 10.1088/1741-4326/ab1769 |
format | Article |
fullrecord | <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_ab1769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_research_chalmers_se_fe926f1b_cc5f_43d3_8d43_d18aefbb385f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8805e458c77b702e3c4f8871fb86450b424bd48901d46e2e7cd756d0d2a1cfd73</originalsourceid><addsrcrecordid>eNp1UUtr3DAQFqWFbtPcezQ99FQnkvX0seTRLAkU2uY86DFiHWxpkbwJ-fdZ45JTcxoYvsfM9xHyhdEzRo05Z1qwVvBOnVvHtOrfkc3r6j3ZUNr1rZRMfiSfan2glAnG-Ybc_kaPaW4ut9tte9nY8GiTx9oMqSmHZJ_sc4Mj-rnk1Exo66HgtOBtCs2UA47Nox2HYOchp8_kQ7RjxdN_84TcX1_9vbhp73793F78uGu9kGpujaEShTRea6dph9yLaIxm0RklJHWiEy4I01MWhMIOtQ9aqkBDZ5mPQfMT8mfVrU-4PzjYl2Gy5RmyHaBgRVv8DvzOjhOWChUhYt-pyBx4LyMIHjiYIDgEZixG57iR8aj6dVXNdR6g-mFGv_M5peP3wCRjPV2s6QryJddaML6aMwpLD7CEDkvosPZwpHxbKUPew0M-lHTMBlIE2YMCqhTtJOzDcsD3_wDf1H0BXb6VkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recent DIII-D advances in runaway electron measurement and model validation</title><source>Institute of Physics Journals</source><creator>Paz-Soldan, C. ; Eidietis, N.W. ; Hollmann, E.M. ; Aleynikov, P. ; Carbajal, L. ; Heidbrink, W.W. ; Hoppe, M. ; Liu, C. ; Lvovskiy, A. ; Shiraki, D. ; Spong, D. ; Brennan, D.P. ; Cooper, C.M. ; del-Castillo-Negrete, D. ; Du, X. ; Embreus, O. ; Fulop, T. ; Herfindal, J. ; Moyer, R. ; Parks, P. ; Thome, K.E.</creator><creatorcontrib>Paz-Soldan, C. ; Eidietis, N.W. ; Hollmann, E.M. ; Aleynikov, P. ; Carbajal, L. ; Heidbrink, W.W. ; Hoppe, M. ; Liu, C. ; Lvovskiy, A. ; Shiraki, D. ; Spong, D. ; Brennan, D.P. ; Cooper, C.M. ; del-Castillo-Negrete, D. ; Du, X. ; Embreus, O. ; Fulop, T. ; Herfindal, J. ; Moyer, R. ; Parks, P. ; Thome, K.E. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Novel measurements and modeling of runaway electron (RE) dynamics in DIII-D have resolved experimental discrepancies and validated predictions for ITER, improving confidence that RE avoidance and mitigation can be predictably achieved. Considering RE formation, first experimental assessments of the RE seed current demonstrates that present hot-tail theories are not yet accurate and require improved treatment of the pellet dynamics. Novel measurements of kinetic instabilities in the MHz-range have been made in the RE formation phase, with the intensity of these modes correlated with previously unexplained empirical thresholds for RE generation. Controlled RE dissipation experiments in quiescent regimes have validated RE distribution function dependencies on collisional and synchrotron damping, both in terms of distribution function shape and dissipation rates. Measurements of RE bremsstrahlung and synchrotron emission are now used in tandem to resolve energy and pitch-angle effects. A resolution to long-standing dissipation anomalies in the quiescent regime is offered by taking into account kinetic instability effects on RE phase-space dynamics. Kinetic instabilities in the 100-200 MHz range are directly observed, though modeling finds the largest dissipation arises from GHz range instabilities that are beyond the reach of existing diagnostics. Kinetic instabilities are also observed in the mature post-disruption RE plateau phase, so long as the collisional damping rate is reduced with low-Z injection. Experiments with high-Z injection find that the dissipation rate saturates with injection quantity, likely due to neutral diffusion rates being slower than vertical instability rates in DIII-D. Considering the final loss, a 0D model for first-wall Joule heating is found to be in agreement with experiment, and controlled access to RE equilibria with edge safety factor of two identifies novel dynamics brought about by large-scale kink instabilities. These dynamics are typified by fast (tens of microseconds) RE loss rates without RE beam regeneration. The above measurements and comparison with theory represent significant advances in the understanding of RE dynamics and indicate possible new opportunities for RE avoidance or mitigation via kinetic instabilities.</description><identifier>ISSN: 0029-5515</identifier><identifier>ISSN: 1741-4326</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ab1769</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; disruption ; kinetic instability ; runaway electron ; tokamak</subject><ispartof>Nuclear fusion, 2019-05, Vol.59 (6), p.66025</ispartof><rights>2019 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8805e458c77b702e3c4f8871fb86450b424bd48901d46e2e7cd756d0d2a1cfd73</citedby><cites>FETCH-LOGICAL-c456t-8805e458c77b702e3c4f8871fb86450b424bd48901d46e2e7cd756d0d2a1cfd73</cites><orcidid>0000-0002-6747-955X ; 0000-0002-3649-1169 ; 0000-0002-1452-6949 ; 0000-0002-6942-8043 ; 0000-0003-0167-5053 ; 0000-0002-4801-3922 ; 0000-0001-7183-801X ; 0000-0001-5069-4934 ; 0000-0003-3994-8977 ; 0000-0003-2846-597X ; 0000-0003-2370-1873 ; 0000000236491169 ; 000000017183801X ; 0000000323701873 ; 0000000339948977 ; 0000000301675053 ; 0000000269428043 ; 0000000248013922 ; 0000000217252787 ; 0000000150694934 ; 000000026747955X ; 0000000214526949 ; 000000032846597X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ab1769/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1511907$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/510403$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Paz-Soldan, C.</creatorcontrib><creatorcontrib>Eidietis, N.W.</creatorcontrib><creatorcontrib>Hollmann, E.M.</creatorcontrib><creatorcontrib>Aleynikov, P.</creatorcontrib><creatorcontrib>Carbajal, L.</creatorcontrib><creatorcontrib>Heidbrink, W.W.</creatorcontrib><creatorcontrib>Hoppe, M.</creatorcontrib><creatorcontrib>Liu, C.</creatorcontrib><creatorcontrib>Lvovskiy, A.</creatorcontrib><creatorcontrib>Shiraki, D.</creatorcontrib><creatorcontrib>Spong, D.</creatorcontrib><creatorcontrib>Brennan, D.P.</creatorcontrib><creatorcontrib>Cooper, C.M.</creatorcontrib><creatorcontrib>del-Castillo-Negrete, D.</creatorcontrib><creatorcontrib>Du, X.</creatorcontrib><creatorcontrib>Embreus, O.</creatorcontrib><creatorcontrib>Fulop, T.</creatorcontrib><creatorcontrib>Herfindal, J.</creatorcontrib><creatorcontrib>Moyer, R.</creatorcontrib><creatorcontrib>Parks, P.</creatorcontrib><creatorcontrib>Thome, K.E.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Recent DIII-D advances in runaway electron measurement and model validation</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Novel measurements and modeling of runaway electron (RE) dynamics in DIII-D have resolved experimental discrepancies and validated predictions for ITER, improving confidence that RE avoidance and mitigation can be predictably achieved. Considering RE formation, first experimental assessments of the RE seed current demonstrates that present hot-tail theories are not yet accurate and require improved treatment of the pellet dynamics. Novel measurements of kinetic instabilities in the MHz-range have been made in the RE formation phase, with the intensity of these modes correlated with previously unexplained empirical thresholds for RE generation. Controlled RE dissipation experiments in quiescent regimes have validated RE distribution function dependencies on collisional and synchrotron damping, both in terms of distribution function shape and dissipation rates. Measurements of RE bremsstrahlung and synchrotron emission are now used in tandem to resolve energy and pitch-angle effects. A resolution to long-standing dissipation anomalies in the quiescent regime is offered by taking into account kinetic instability effects on RE phase-space dynamics. Kinetic instabilities in the 100-200 MHz range are directly observed, though modeling finds the largest dissipation arises from GHz range instabilities that are beyond the reach of existing diagnostics. Kinetic instabilities are also observed in the mature post-disruption RE plateau phase, so long as the collisional damping rate is reduced with low-Z injection. Experiments with high-Z injection find that the dissipation rate saturates with injection quantity, likely due to neutral diffusion rates being slower than vertical instability rates in DIII-D. Considering the final loss, a 0D model for first-wall Joule heating is found to be in agreement with experiment, and controlled access to RE equilibria with edge safety factor of two identifies novel dynamics brought about by large-scale kink instabilities. These dynamics are typified by fast (tens of microseconds) RE loss rates without RE beam regeneration. The above measurements and comparison with theory represent significant advances in the understanding of RE dynamics and indicate possible new opportunities for RE avoidance or mitigation via kinetic instabilities.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>disruption</subject><subject>kinetic instability</subject><subject>runaway electron</subject><subject>tokamak</subject><issn>0029-5515</issn><issn>1741-4326</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UUtr3DAQFqWFbtPcezQ99FQnkvX0seTRLAkU2uY86DFiHWxpkbwJ-fdZ45JTcxoYvsfM9xHyhdEzRo05Z1qwVvBOnVvHtOrfkc3r6j3ZUNr1rZRMfiSfan2glAnG-Ybc_kaPaW4ut9tte9nY8GiTx9oMqSmHZJ_sc4Mj-rnk1Exo66HgtOBtCs2UA47Nox2HYOchp8_kQ7RjxdN_84TcX1_9vbhp73793F78uGu9kGpujaEShTRea6dph9yLaIxm0RklJHWiEy4I01MWhMIOtQ9aqkBDZ5mPQfMT8mfVrU-4PzjYl2Gy5RmyHaBgRVv8DvzOjhOWChUhYt-pyBx4LyMIHjiYIDgEZixG57iR8aj6dVXNdR6g-mFGv_M5peP3wCRjPV2s6QryJddaML6aMwpLD7CEDkvosPZwpHxbKUPew0M-lHTMBlIE2YMCqhTtJOzDcsD3_wDf1H0BXb6VkA</recordid><startdate>20190508</startdate><enddate>20190508</enddate><creator>Paz-Soldan, C.</creator><creator>Eidietis, N.W.</creator><creator>Hollmann, E.M.</creator><creator>Aleynikov, P.</creator><creator>Carbajal, L.</creator><creator>Heidbrink, W.W.</creator><creator>Hoppe, M.</creator><creator>Liu, C.</creator><creator>Lvovskiy, A.</creator><creator>Shiraki, D.</creator><creator>Spong, D.</creator><creator>Brennan, D.P.</creator><creator>Cooper, C.M.</creator><creator>del-Castillo-Negrete, D.</creator><creator>Du, X.</creator><creator>Embreus, O.</creator><creator>Fulop, T.</creator><creator>Herfindal, J.</creator><creator>Moyer, R.</creator><creator>Parks, P.</creator><creator>Thome, K.E.</creator><general>IOP Publishing</general><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0002-6747-955X</orcidid><orcidid>https://orcid.org/0000-0002-3649-1169</orcidid><orcidid>https://orcid.org/0000-0002-1452-6949</orcidid><orcidid>https://orcid.org/0000-0002-6942-8043</orcidid><orcidid>https://orcid.org/0000-0003-0167-5053</orcidid><orcidid>https://orcid.org/0000-0002-4801-3922</orcidid><orcidid>https://orcid.org/0000-0001-7183-801X</orcidid><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000-0003-3994-8977</orcidid><orcidid>https://orcid.org/0000-0003-2846-597X</orcidid><orcidid>https://orcid.org/0000-0003-2370-1873</orcidid><orcidid>https://orcid.org/0000000236491169</orcidid><orcidid>https://orcid.org/000000017183801X</orcidid><orcidid>https://orcid.org/0000000323701873</orcidid><orcidid>https://orcid.org/0000000339948977</orcidid><orcidid>https://orcid.org/0000000301675053</orcidid><orcidid>https://orcid.org/0000000269428043</orcidid><orcidid>https://orcid.org/0000000248013922</orcidid><orcidid>https://orcid.org/0000000217252787</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid><orcidid>https://orcid.org/000000026747955X</orcidid><orcidid>https://orcid.org/0000000214526949</orcidid><orcidid>https://orcid.org/000000032846597X</orcidid></search><sort><creationdate>20190508</creationdate><title>Recent DIII-D advances in runaway electron measurement and model validation</title><author>Paz-Soldan, C. ; Eidietis, N.W. ; Hollmann, E.M. ; Aleynikov, P. ; Carbajal, L. ; Heidbrink, W.W. ; Hoppe, M. ; Liu, C. ; Lvovskiy, A. ; Shiraki, D. ; Spong, D. ; Brennan, D.P. ; Cooper, C.M. ; del-Castillo-Negrete, D. ; Du, X. ; Embreus, O. ; Fulop, T. ; Herfindal, J. ; Moyer, R. ; Parks, P. ; Thome, K.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8805e458c77b702e3c4f8871fb86450b424bd48901d46e2e7cd756d0d2a1cfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>disruption</topic><topic>kinetic instability</topic><topic>runaway electron</topic><topic>tokamak</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paz-Soldan, C.</creatorcontrib><creatorcontrib>Eidietis, N.W.</creatorcontrib><creatorcontrib>Hollmann, E.M.</creatorcontrib><creatorcontrib>Aleynikov, P.</creatorcontrib><creatorcontrib>Carbajal, L.</creatorcontrib><creatorcontrib>Heidbrink, W.W.</creatorcontrib><creatorcontrib>Hoppe, M.</creatorcontrib><creatorcontrib>Liu, C.</creatorcontrib><creatorcontrib>Lvovskiy, A.</creatorcontrib><creatorcontrib>Shiraki, D.</creatorcontrib><creatorcontrib>Spong, D.</creatorcontrib><creatorcontrib>Brennan, D.P.</creatorcontrib><creatorcontrib>Cooper, C.M.</creatorcontrib><creatorcontrib>del-Castillo-Negrete, D.</creatorcontrib><creatorcontrib>Du, X.</creatorcontrib><creatorcontrib>Embreus, O.</creatorcontrib><creatorcontrib>Fulop, T.</creatorcontrib><creatorcontrib>Herfindal, J.</creatorcontrib><creatorcontrib>Moyer, R.</creatorcontrib><creatorcontrib>Parks, P.</creatorcontrib><creatorcontrib>Thome, K.E.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paz-Soldan, C.</au><au>Eidietis, N.W.</au><au>Hollmann, E.M.</au><au>Aleynikov, P.</au><au>Carbajal, L.</au><au>Heidbrink, W.W.</au><au>Hoppe, M.</au><au>Liu, C.</au><au>Lvovskiy, A.</au><au>Shiraki, D.</au><au>Spong, D.</au><au>Brennan, D.P.</au><au>Cooper, C.M.</au><au>del-Castillo-Negrete, D.</au><au>Du, X.</au><au>Embreus, O.</au><au>Fulop, T.</au><au>Herfindal, J.</au><au>Moyer, R.</au><au>Parks, P.</au><au>Thome, K.E.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent DIII-D advances in runaway electron measurement and model validation</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2019-05-08</date><risdate>2019</risdate><volume>59</volume><issue>6</issue><spage>66025</spage><pages>66025-</pages><issn>0029-5515</issn><issn>1741-4326</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Novel measurements and modeling of runaway electron (RE) dynamics in DIII-D have resolved experimental discrepancies and validated predictions for ITER, improving confidence that RE avoidance and mitigation can be predictably achieved. Considering RE formation, first experimental assessments of the RE seed current demonstrates that present hot-tail theories are not yet accurate and require improved treatment of the pellet dynamics. Novel measurements of kinetic instabilities in the MHz-range have been made in the RE formation phase, with the intensity of these modes correlated with previously unexplained empirical thresholds for RE generation. Controlled RE dissipation experiments in quiescent regimes have validated RE distribution function dependencies on collisional and synchrotron damping, both in terms of distribution function shape and dissipation rates. Measurements of RE bremsstrahlung and synchrotron emission are now used in tandem to resolve energy and pitch-angle effects. A resolution to long-standing dissipation anomalies in the quiescent regime is offered by taking into account kinetic instability effects on RE phase-space dynamics. Kinetic instabilities in the 100-200 MHz range are directly observed, though modeling finds the largest dissipation arises from GHz range instabilities that are beyond the reach of existing diagnostics. Kinetic instabilities are also observed in the mature post-disruption RE plateau phase, so long as the collisional damping rate is reduced with low-Z injection. Experiments with high-Z injection find that the dissipation rate saturates with injection quantity, likely due to neutral diffusion rates being slower than vertical instability rates in DIII-D. Considering the final loss, a 0D model for first-wall Joule heating is found to be in agreement with experiment, and controlled access to RE equilibria with edge safety factor of two identifies novel dynamics brought about by large-scale kink instabilities. These dynamics are typified by fast (tens of microseconds) RE loss rates without RE beam regeneration. The above measurements and comparison with theory represent significant advances in the understanding of RE dynamics and indicate possible new opportunities for RE avoidance or mitigation via kinetic instabilities.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ab1769</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6747-955X</orcidid><orcidid>https://orcid.org/0000-0002-3649-1169</orcidid><orcidid>https://orcid.org/0000-0002-1452-6949</orcidid><orcidid>https://orcid.org/0000-0002-6942-8043</orcidid><orcidid>https://orcid.org/0000-0003-0167-5053</orcidid><orcidid>https://orcid.org/0000-0002-4801-3922</orcidid><orcidid>https://orcid.org/0000-0001-7183-801X</orcidid><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000-0003-3994-8977</orcidid><orcidid>https://orcid.org/0000-0003-2846-597X</orcidid><orcidid>https://orcid.org/0000-0003-2370-1873</orcidid><orcidid>https://orcid.org/0000000236491169</orcidid><orcidid>https://orcid.org/000000017183801X</orcidid><orcidid>https://orcid.org/0000000323701873</orcidid><orcidid>https://orcid.org/0000000339948977</orcidid><orcidid>https://orcid.org/0000000301675053</orcidid><orcidid>https://orcid.org/0000000269428043</orcidid><orcidid>https://orcid.org/0000000248013922</orcidid><orcidid>https://orcid.org/0000000217252787</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid><orcidid>https://orcid.org/000000026747955X</orcidid><orcidid>https://orcid.org/0000000214526949</orcidid><orcidid>https://orcid.org/000000032846597X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2019-05, Vol.59 (6), p.66025 |
issn | 0029-5515 1741-4326 1741-4326 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1741_4326_ab1769 |
source | Institute of Physics Journals |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY disruption kinetic instability runaway electron tokamak |
title | Recent DIII-D advances in runaway electron measurement and model validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20DIII-D%20advances%20in%20runaway%20electron%20measurement%20and%20model%20validation&rft.jtitle=Nuclear%20fusion&rft.au=Paz-Soldan,%20C.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-05-08&rft.volume=59&rft.issue=6&rft.spage=66025&rft.pages=66025-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ab1769&rft_dat=%3Cswepub_cross%3Eoai_research_chalmers_se_fe926f1b_cc5f_43d3_8d43_d18aefbb385f%3C/swepub_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |