From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces

Brain-computer interfaces (BCI) have been extensively researched in controlled lab settings where the P300 event-related potential (ERP), elicited in the rapid serial visual presentation (RSVP) paradigm, has shown promising potential. However, deploying BCIs outside of laboratory settings is challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2024-07, Vol.21 (4), p.46011
Hauptverfasser: Ahsan Awais, Muhammad, Ward, Tomas, Redmond, Peter, Healy, Graham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 46011
container_title Journal of neural engineering
container_volume 21
creator Ahsan Awais, Muhammad
Ward, Tomas
Redmond, Peter
Healy, Graham
description Brain-computer interfaces (BCI) have been extensively researched in controlled lab settings where the P300 event-related potential (ERP), elicited in the rapid serial visual presentation (RSVP) paradigm, has shown promising potential. However, deploying BCIs outside of laboratory settings is challenging due to the presence of contaminating artifacts that often occur as a result of activities such as talking, head movements, and body movements. These artifacts can severely contaminate the measured EEG signals and consequently impede detection of the P300 ERP. Our goal is to assess the impact of these real-world noise factors on the performance of a RSVP-BCI, specifically focusing on single-trial P300 detection. In this study, we examine the impact of movement activity on the performance of a P300-based RSVP-BCI application designed to allow users to search images at high speed. Using machine learning, we assessed P300 detection performance using both EEG data captured in optimal recording conditions (e.g. where participants were instructed to refrain from moving) and a variety of conditions where the participant intentionally produced movements to contaminate the EEG recording. The results, presented as area under the receiver operating characteristic curve (ROC-AUC) scores, provide insight into the significant impact of noise on single-trial P300 detection. Notably, there is a reduction in classifier detection accuracy when intentionally contaminated RSVP trials are used for training and testing, when compared to using non-intentionally contaminated RSVP trials. Our findings underscore the necessity of addressing and mitigating noise in EEG recordings to facilitate the use of BCIs in real-world settings, thus extending the reach of EEG technology beyond the confines of the laboratory.
doi_str_mv 10.1088/1741-2552/ad5d17
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_2552_ad5d17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073653469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ec233d6381e875b6ee48f9ce9447bffe6a15601bc4436f3930207be4b7fcef403</originalsourceid><addsrcrecordid>eNp9kTtvFTEQhS1ERB7QUyF3ULCJvfa-6KKIQKRINFBbtncMvtq1jWc3iD_C743v3XArRDWjo2-OdM4Q8pqzS876_op3kld109RXemxG3j0jZ0fp-XFv2Sk5R9wxJng3sBfkVPSD5EPfnpE_tznOdNKGLpFO3sEHqhEB0YfvdPkB1M9J24VGRzPoqfoV8zRSHxbIRfYxII3hAMZUpL1yYHXyI0XIXk_0weNaRsqAEJYDUxmNMFKTtQ-VjXNai-Fm67QFfElOnJ4QXj3NC_Lt9uPXm8_V_ZdPdzfX95WtB7FUYGshxlb0HPquMS2A7N1gYZCyM85Bq3lJz42VUrRODILVrDMgTecsOMnEBXm3-aYcf66Ai5o9WpgmHSCuqATrRNsI2Q4FZRtqc0TM4FTKftb5t-JM7b-h9nWrffVq-0Y5efPkvpoZxuPB3_oL8H4DfExqF9ccStj_-b39B74LoGqupGKyZOUqjU48AhTuo_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073653469</pqid></control><display><type>article</type><title>From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ahsan Awais, Muhammad ; Ward, Tomas ; Redmond, Peter ; Healy, Graham</creator><creatorcontrib>Ahsan Awais, Muhammad ; Ward, Tomas ; Redmond, Peter ; Healy, Graham</creatorcontrib><description>Brain-computer interfaces (BCI) have been extensively researched in controlled lab settings where the P300 event-related potential (ERP), elicited in the rapid serial visual presentation (RSVP) paradigm, has shown promising potential. However, deploying BCIs outside of laboratory settings is challenging due to the presence of contaminating artifacts that often occur as a result of activities such as talking, head movements, and body movements. These artifacts can severely contaminate the measured EEG signals and consequently impede detection of the P300 ERP. Our goal is to assess the impact of these real-world noise factors on the performance of a RSVP-BCI, specifically focusing on single-trial P300 detection. In this study, we examine the impact of movement activity on the performance of a P300-based RSVP-BCI application designed to allow users to search images at high speed. Using machine learning, we assessed P300 detection performance using both EEG data captured in optimal recording conditions (e.g. where participants were instructed to refrain from moving) and a variety of conditions where the participant intentionally produced movements to contaminate the EEG recording. The results, presented as area under the receiver operating characteristic curve (ROC-AUC) scores, provide insight into the significant impact of noise on single-trial P300 detection. Notably, there is a reduction in classifier detection accuracy when intentionally contaminated RSVP trials are used for training and testing, when compared to using non-intentionally contaminated RSVP trials. Our findings underscore the necessity of addressing and mitigating noise in EEG recordings to facilitate the use of BCIs in real-world settings, thus extending the reach of EEG technology beyond the confines of the laboratory.</description><identifier>ISSN: 1741-2560</identifier><identifier>ISSN: 1741-2552</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ad5d17</identifier><identifier>PMID: 38941986</identifier><identifier>CODEN: JNEOBH</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adult ; artefacts ; brain-computer interface (BCI) ; Brain-Computer Interfaces ; electroencephalogram (EEG) ; Electroencephalography - methods ; event-related potential (ERP) ; Event-Related Potentials, P300 - physiology ; Female ; Humans ; Machine Learning ; Male ; Movement - physiology ; noise ; P300 ; Photic Stimulation - methods ; rapid serial visual presentation (RSVP) ; Visual Perception - physiology ; Young Adult</subject><ispartof>Journal of neural engineering, 2024-07, Vol.21 (4), p.46011</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-ec233d6381e875b6ee48f9ce9447bffe6a15601bc4436f3930207be4b7fcef403</cites><orcidid>0000-0001-6429-6339 ; 0000-0002-6173-6607 ; 0000-0002-1980-3618 ; 0000-0001-8722-5787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ad5d17/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38941986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahsan Awais, Muhammad</creatorcontrib><creatorcontrib>Ward, Tomas</creatorcontrib><creatorcontrib>Redmond, Peter</creatorcontrib><creatorcontrib>Healy, Graham</creatorcontrib><title>From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Brain-computer interfaces (BCI) have been extensively researched in controlled lab settings where the P300 event-related potential (ERP), elicited in the rapid serial visual presentation (RSVP) paradigm, has shown promising potential. However, deploying BCIs outside of laboratory settings is challenging due to the presence of contaminating artifacts that often occur as a result of activities such as talking, head movements, and body movements. These artifacts can severely contaminate the measured EEG signals and consequently impede detection of the P300 ERP. Our goal is to assess the impact of these real-world noise factors on the performance of a RSVP-BCI, specifically focusing on single-trial P300 detection. In this study, we examine the impact of movement activity on the performance of a P300-based RSVP-BCI application designed to allow users to search images at high speed. Using machine learning, we assessed P300 detection performance using both EEG data captured in optimal recording conditions (e.g. where participants were instructed to refrain from moving) and a variety of conditions where the participant intentionally produced movements to contaminate the EEG recording. The results, presented as area under the receiver operating characteristic curve (ROC-AUC) scores, provide insight into the significant impact of noise on single-trial P300 detection. Notably, there is a reduction in classifier detection accuracy when intentionally contaminated RSVP trials are used for training and testing, when compared to using non-intentionally contaminated RSVP trials. Our findings underscore the necessity of addressing and mitigating noise in EEG recordings to facilitate the use of BCIs in real-world settings, thus extending the reach of EEG technology beyond the confines of the laboratory.</description><subject>Adult</subject><subject>artefacts</subject><subject>brain-computer interface (BCI)</subject><subject>Brain-Computer Interfaces</subject><subject>electroencephalogram (EEG)</subject><subject>Electroencephalography - methods</subject><subject>event-related potential (ERP)</subject><subject>Event-Related Potentials, P300 - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>noise</subject><subject>P300</subject><subject>Photic Stimulation - methods</subject><subject>rapid serial visual presentation (RSVP)</subject><subject>Visual Perception - physiology</subject><subject>Young Adult</subject><issn>1741-2560</issn><issn>1741-2552</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp9kTtvFTEQhS1ERB7QUyF3ULCJvfa-6KKIQKRINFBbtncMvtq1jWc3iD_C743v3XArRDWjo2-OdM4Q8pqzS876_op3kld109RXemxG3j0jZ0fp-XFv2Sk5R9wxJng3sBfkVPSD5EPfnpE_tznOdNKGLpFO3sEHqhEB0YfvdPkB1M9J24VGRzPoqfoV8zRSHxbIRfYxII3hAMZUpL1yYHXyI0XIXk_0weNaRsqAEJYDUxmNMFKTtQ-VjXNai-Fm67QFfElOnJ4QXj3NC_Lt9uPXm8_V_ZdPdzfX95WtB7FUYGshxlb0HPquMS2A7N1gYZCyM85Bq3lJz42VUrRODILVrDMgTecsOMnEBXm3-aYcf66Ai5o9WpgmHSCuqATrRNsI2Q4FZRtqc0TM4FTKftb5t-JM7b-h9nWrffVq-0Y5efPkvpoZxuPB3_oL8H4DfExqF9ccStj_-b39B74LoGqupGKyZOUqjU48AhTuo_U</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Ahsan Awais, Muhammad</creator><creator>Ward, Tomas</creator><creator>Redmond, Peter</creator><creator>Healy, Graham</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6429-6339</orcidid><orcidid>https://orcid.org/0000-0002-6173-6607</orcidid><orcidid>https://orcid.org/0000-0002-1980-3618</orcidid><orcidid>https://orcid.org/0000-0001-8722-5787</orcidid></search><sort><creationdate>20240710</creationdate><title>From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces</title><author>Ahsan Awais, Muhammad ; Ward, Tomas ; Redmond, Peter ; Healy, Graham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ec233d6381e875b6ee48f9ce9447bffe6a15601bc4436f3930207be4b7fcef403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>artefacts</topic><topic>brain-computer interface (BCI)</topic><topic>Brain-Computer Interfaces</topic><topic>electroencephalogram (EEG)</topic><topic>Electroencephalography - methods</topic><topic>event-related potential (ERP)</topic><topic>Event-Related Potentials, P300 - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>noise</topic><topic>P300</topic><topic>Photic Stimulation - methods</topic><topic>rapid serial visual presentation (RSVP)</topic><topic>Visual Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahsan Awais, Muhammad</creatorcontrib><creatorcontrib>Ward, Tomas</creatorcontrib><creatorcontrib>Redmond, Peter</creatorcontrib><creatorcontrib>Healy, Graham</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahsan Awais, Muhammad</au><au>Ward, Tomas</au><au>Redmond, Peter</au><au>Healy, Graham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>46011</spage><pages>46011-</pages><issn>1741-2560</issn><issn>1741-2552</issn><eissn>1741-2552</eissn><coden>JNEOBH</coden><abstract>Brain-computer interfaces (BCI) have been extensively researched in controlled lab settings where the P300 event-related potential (ERP), elicited in the rapid serial visual presentation (RSVP) paradigm, has shown promising potential. However, deploying BCIs outside of laboratory settings is challenging due to the presence of contaminating artifacts that often occur as a result of activities such as talking, head movements, and body movements. These artifacts can severely contaminate the measured EEG signals and consequently impede detection of the P300 ERP. Our goal is to assess the impact of these real-world noise factors on the performance of a RSVP-BCI, specifically focusing on single-trial P300 detection. In this study, we examine the impact of movement activity on the performance of a P300-based RSVP-BCI application designed to allow users to search images at high speed. Using machine learning, we assessed P300 detection performance using both EEG data captured in optimal recording conditions (e.g. where participants were instructed to refrain from moving) and a variety of conditions where the participant intentionally produced movements to contaminate the EEG recording. The results, presented as area under the receiver operating characteristic curve (ROC-AUC) scores, provide insight into the significant impact of noise on single-trial P300 detection. Notably, there is a reduction in classifier detection accuracy when intentionally contaminated RSVP trials are used for training and testing, when compared to using non-intentionally contaminated RSVP trials. Our findings underscore the necessity of addressing and mitigating noise in EEG recordings to facilitate the use of BCIs in real-world settings, thus extending the reach of EEG technology beyond the confines of the laboratory.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38941986</pmid><doi>10.1088/1741-2552/ad5d17</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6429-6339</orcidid><orcidid>https://orcid.org/0000-0002-6173-6607</orcidid><orcidid>https://orcid.org/0000-0002-1980-3618</orcidid><orcidid>https://orcid.org/0000-0001-8722-5787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2024-07, Vol.21 (4), p.46011
issn 1741-2560
1741-2552
1741-2552
language eng
recordid cdi_crossref_primary_10_1088_1741_2552_ad5d17
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Adult
artefacts
brain-computer interface (BCI)
Brain-Computer Interfaces
electroencephalogram (EEG)
Electroencephalography - methods
event-related potential (ERP)
Event-Related Potentials, P300 - physiology
Female
Humans
Machine Learning
Male
Movement - physiology
noise
P300
Photic Stimulation - methods
rapid serial visual presentation (RSVP)
Visual Perception - physiology
Young Adult
title From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20lab%20to%20life:%20assessing%20the%20impact%20of%20real-world%20interactions%20on%20the%20operation%20of%20rapid%20serial%20visual%20presentation-based%20brain-computer%20interfaces&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Ahsan%20Awais,%20Muhammad&rft.date=2024-07-10&rft.volume=21&rft.issue=4&rft.spage=46011&rft.pages=46011-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEOBH&rft_id=info:doi/10.1088/1741-2552/ad5d17&rft_dat=%3Cproquest_cross%3E3073653469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073653469&rft_id=info:pmid/38941986&rfr_iscdi=true