Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus
Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers....
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2024-08, Vol.21 (4), p.46022 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 46022 |
container_title | Journal of neural engineering |
container_volume | 21 |
creator | Olorocisimo, Joshua Philippe Ohta, Yasumi Regonia, Paul R Castillo, Virgil C G Yoshimoto, Junichiro Takehara, Hironari Sasagawa, Kiyotaka Ohta, Jun |
description | Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers. Our developed "CIS-NAIST" device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus. The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we employed machine learning techniques for seizure classification and prediction. Using Long-Short Term Memory and Hidden Markov Models, we successfully classified seizure calcium activity and predicted seizure behavior based on the multi-layer imaging data. Taken together, our device can enable a minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.
. |
doi_str_mv | 10.1088/1741-2552/ad5c03 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_2552_ad5c03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072800283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-b6328564771065c5bb7378814339e5c45929a9b732ed6c571a4531474904900c3</originalsourceid><addsrcrecordid>eNp1kEtv1DAQgK0KRB9w7wn5Rg-Ejl9xciyrUioV9QCcLceZbb1KHGMnSNsLfx2vtuypSCN5NPpmxvMRcs7gE4OmuWRasoorxS9trxyII3JyKL065DUck9OcNwCC6RbekGPRtFwxaE_In8_J-lD5MQ42zLYbkAbEfsBq3kakq2_336kf7YMPD7TH394hxbDDMh2XYfbVYLeYaO9zRjf7KdBpTTP6pyUhdXZwfhlpvw129C5TH-j8iPTRxzg5O8YlvyWv13bI-O75PSM_v1z_WH2t7u5vbldXd5UrH52rrha8UbXUmkGtnOo6LXTTMClEi8pJ1fLWtqXIsa-d0sxKJZjUsoUS4MQZudjPjWn6tWCezeizw6FcjdOSjQDNGwDeiILCHnVpyjnh2sRUFKStYWB22s3Oq9k5NnvtpeX98_SlG7E_NPzzXIAPe8BP0WymJYVyrNkENJwZaUDWwLmJ_bqQH18g_7v5LwW8mK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072800283</pqid></control><display><type>article</type><title>Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Olorocisimo, Joshua Philippe ; Ohta, Yasumi ; Regonia, Paul R ; Castillo, Virgil C G ; Yoshimoto, Junichiro ; Takehara, Hironari ; Sasagawa, Kiyotaka ; Ohta, Jun</creator><creatorcontrib>Olorocisimo, Joshua Philippe ; Ohta, Yasumi ; Regonia, Paul R ; Castillo, Virgil C G ; Yoshimoto, Junichiro ; Takehara, Hironari ; Sasagawa, Kiyotaka ; Ohta, Jun</creatorcontrib><description>Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers. Our developed "CIS-NAIST" device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus. The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we employed machine learning techniques for seizure classification and prediction. Using Long-Short Term Memory and Hidden Markov Models, we successfully classified seizure calcium activity and predicted seizure behavior based on the multi-layer imaging data. Taken together, our device can enable a minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.&#xD.</description><identifier>ISSN: 1741-2560</identifier><identifier>ISSN: 1741-2552</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ad5c03</identifier><identifier>PMID: 38925109</identifier><identifier>CODEN: JNEOBH</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>brain-implantable devices ; calcium imaging ; CMOS image sensor ; hippocampus ; seizure ; temporal lobe epilepsy</subject><ispartof>Journal of neural engineering, 2024-08, Vol.21 (4), p.46022</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-b6328564771065c5bb7378814339e5c45929a9b732ed6c571a4531474904900c3</cites><orcidid>0000-0003-1320-2405 ; 0000-0001-8194-9020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ad5c03/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27911,27912,53833,53880</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38925109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olorocisimo, Joshua Philippe</creatorcontrib><creatorcontrib>Ohta, Yasumi</creatorcontrib><creatorcontrib>Regonia, Paul R</creatorcontrib><creatorcontrib>Castillo, Virgil C G</creatorcontrib><creatorcontrib>Yoshimoto, Junichiro</creatorcontrib><creatorcontrib>Takehara, Hironari</creatorcontrib><creatorcontrib>Sasagawa, Kiyotaka</creatorcontrib><creatorcontrib>Ohta, Jun</creatorcontrib><title>Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers. Our developed "CIS-NAIST" device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus. The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we employed machine learning techniques for seizure classification and prediction. Using Long-Short Term Memory and Hidden Markov Models, we successfully classified seizure calcium activity and predicted seizure behavior based on the multi-layer imaging data. Taken together, our device can enable a minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.&#xD.</description><subject>brain-implantable devices</subject><subject>calcium imaging</subject><subject>CMOS image sensor</subject><subject>hippocampus</subject><subject>seizure</subject><subject>temporal lobe epilepsy</subject><issn>1741-2560</issn><issn>1741-2552</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEtv1DAQgK0KRB9w7wn5Rg-Ejl9xciyrUioV9QCcLceZbb1KHGMnSNsLfx2vtuypSCN5NPpmxvMRcs7gE4OmuWRasoorxS9trxyII3JyKL065DUck9OcNwCC6RbekGPRtFwxaE_In8_J-lD5MQ42zLYbkAbEfsBq3kakq2_336kf7YMPD7TH394hxbDDMh2XYfbVYLeYaO9zRjf7KdBpTTP6pyUhdXZwfhlpvw129C5TH-j8iPTRxzg5O8YlvyWv13bI-O75PSM_v1z_WH2t7u5vbldXd5UrH52rrha8UbXUmkGtnOo6LXTTMClEi8pJ1fLWtqXIsa-d0sxKJZjUsoUS4MQZudjPjWn6tWCezeizw6FcjdOSjQDNGwDeiILCHnVpyjnh2sRUFKStYWB22s3Oq9k5NnvtpeX98_SlG7E_NPzzXIAPe8BP0WymJYVyrNkENJwZaUDWwLmJ_bqQH18g_7v5LwW8mK8</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Olorocisimo, Joshua Philippe</creator><creator>Ohta, Yasumi</creator><creator>Regonia, Paul R</creator><creator>Castillo, Virgil C G</creator><creator>Yoshimoto, Junichiro</creator><creator>Takehara, Hironari</creator><creator>Sasagawa, Kiyotaka</creator><creator>Ohta, Jun</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1320-2405</orcidid><orcidid>https://orcid.org/0000-0001-8194-9020</orcidid></search><sort><creationdate>20240801</creationdate><title>Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus</title><author>Olorocisimo, Joshua Philippe ; Ohta, Yasumi ; Regonia, Paul R ; Castillo, Virgil C G ; Yoshimoto, Junichiro ; Takehara, Hironari ; Sasagawa, Kiyotaka ; Ohta, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-b6328564771065c5bb7378814339e5c45929a9b732ed6c571a4531474904900c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brain-implantable devices</topic><topic>calcium imaging</topic><topic>CMOS image sensor</topic><topic>hippocampus</topic><topic>seizure</topic><topic>temporal lobe epilepsy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olorocisimo, Joshua Philippe</creatorcontrib><creatorcontrib>Ohta, Yasumi</creatorcontrib><creatorcontrib>Regonia, Paul R</creatorcontrib><creatorcontrib>Castillo, Virgil C G</creatorcontrib><creatorcontrib>Yoshimoto, Junichiro</creatorcontrib><creatorcontrib>Takehara, Hironari</creatorcontrib><creatorcontrib>Sasagawa, Kiyotaka</creatorcontrib><creatorcontrib>Ohta, Jun</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olorocisimo, Joshua Philippe</au><au>Ohta, Yasumi</au><au>Regonia, Paul R</au><au>Castillo, Virgil C G</au><au>Yoshimoto, Junichiro</au><au>Takehara, Hironari</au><au>Sasagawa, Kiyotaka</au><au>Ohta, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>46022</spage><pages>46022-</pages><issn>1741-2560</issn><issn>1741-2552</issn><eissn>1741-2552</eissn><coden>JNEOBH</coden><abstract>Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers. Our developed "CIS-NAIST" device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus. The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we employed machine learning techniques for seizure classification and prediction. Using Long-Short Term Memory and Hidden Markov Models, we successfully classified seizure calcium activity and predicted seizure behavior based on the multi-layer imaging data. Taken together, our device can enable a minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.&#xD.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38925109</pmid><doi>10.1088/1741-2552/ad5c03</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1320-2405</orcidid><orcidid>https://orcid.org/0000-0001-8194-9020</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2024-08, Vol.21 (4), p.46022 |
issn | 1741-2560 1741-2552 1741-2552 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1741_2552_ad5c03 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | brain-implantable devices calcium imaging CMOS image sensor hippocampus seizure temporal lobe epilepsy |
title | Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain-implantable%20needle-type%20CMOS%20imaging%20device%20enables%20multi-layer%20dissection%20of%20seizure%20calcium%20dynamics%20in%20the%20hippocampus&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Olorocisimo,%20Joshua%20Philippe&rft.date=2024-08-01&rft.volume=21&rft.issue=4&rft.spage=46022&rft.pages=46022-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEOBH&rft_id=info:doi/10.1088/1741-2552/ad5c03&rft_dat=%3Cproquest_cross%3E3072800283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072800283&rft_id=info:pmid/38925109&rfr_iscdi=true |