Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus

Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2024-08, Vol.21 (4), p.46022
Hauptverfasser: Olorocisimo, Joshua Philippe, Ohta, Yasumi, Regonia, Paul R, Castillo, Virgil C G, Yoshimoto, Junichiro, Takehara, Hironari, Sasagawa, Kiyotaka, Ohta, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 46022
container_title Journal of neural engineering
container_volume 21
creator Olorocisimo, Joshua Philippe
Ohta, Yasumi
Regonia, Paul R
Castillo, Virgil C G
Yoshimoto, Junichiro
Takehara, Hironari
Sasagawa, Kiyotaka
Ohta, Jun
description Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers. Our developed "CIS-NAIST" device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus. The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we employed machine learning techniques for seizure classification and prediction. Using Long-Short Term Memory and Hidden Markov Models, we successfully classified seizure calcium activity and predicted seizure behavior based on the multi-layer imaging data. Taken together, our device can enable a minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.&#xD.
doi_str_mv 10.1088/1741-2552/ad5c03
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_2552_ad5c03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072800283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-b6328564771065c5bb7378814339e5c45929a9b732ed6c571a4531474904900c3</originalsourceid><addsrcrecordid>eNp1kEtv1DAQgK0KRB9w7wn5Rg-Ejl9xciyrUioV9QCcLceZbb1KHGMnSNsLfx2vtuypSCN5NPpmxvMRcs7gE4OmuWRasoorxS9trxyII3JyKL065DUck9OcNwCC6RbekGPRtFwxaE_In8_J-lD5MQ42zLYbkAbEfsBq3kakq2_336kf7YMPD7TH394hxbDDMh2XYfbVYLeYaO9zRjf7KdBpTTP6pyUhdXZwfhlpvw129C5TH-j8iPTRxzg5O8YlvyWv13bI-O75PSM_v1z_WH2t7u5vbldXd5UrH52rrha8UbXUmkGtnOo6LXTTMClEi8pJ1fLWtqXIsa-d0sxKJZjUsoUS4MQZudjPjWn6tWCezeizw6FcjdOSjQDNGwDeiILCHnVpyjnh2sRUFKStYWB22s3Oq9k5NnvtpeX98_SlG7E_NPzzXIAPe8BP0WymJYVyrNkENJwZaUDWwLmJ_bqQH18g_7v5LwW8mK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072800283</pqid></control><display><type>article</type><title>Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Olorocisimo, Joshua Philippe ; Ohta, Yasumi ; Regonia, Paul R ; Castillo, Virgil C G ; Yoshimoto, Junichiro ; Takehara, Hironari ; Sasagawa, Kiyotaka ; Ohta, Jun</creator><creatorcontrib>Olorocisimo, Joshua Philippe ; Ohta, Yasumi ; Regonia, Paul R ; Castillo, Virgil C G ; Yoshimoto, Junichiro ; Takehara, Hironari ; Sasagawa, Kiyotaka ; Ohta, Jun</creatorcontrib><description>Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers. Our developed "CIS-NAIST" device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus. The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we employed machine learning techniques for seizure classification and prediction. Using Long-Short Term Memory and Hidden Markov Models, we successfully classified seizure calcium activity and predicted seizure behavior based on the multi-layer imaging data. Taken together, our device can enable a minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.&amp;#xD.</description><identifier>ISSN: 1741-2560</identifier><identifier>ISSN: 1741-2552</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ad5c03</identifier><identifier>PMID: 38925109</identifier><identifier>CODEN: JNEOBH</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>brain-implantable devices ; calcium imaging ; CMOS image sensor ; hippocampus ; seizure ; temporal lobe epilepsy</subject><ispartof>Journal of neural engineering, 2024-08, Vol.21 (4), p.46022</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-b6328564771065c5bb7378814339e5c45929a9b732ed6c571a4531474904900c3</cites><orcidid>0000-0003-1320-2405 ; 0000-0001-8194-9020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ad5c03/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27911,27912,53833,53880</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38925109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olorocisimo, Joshua Philippe</creatorcontrib><creatorcontrib>Ohta, Yasumi</creatorcontrib><creatorcontrib>Regonia, Paul R</creatorcontrib><creatorcontrib>Castillo, Virgil C G</creatorcontrib><creatorcontrib>Yoshimoto, Junichiro</creatorcontrib><creatorcontrib>Takehara, Hironari</creatorcontrib><creatorcontrib>Sasagawa, Kiyotaka</creatorcontrib><creatorcontrib>Ohta, Jun</creatorcontrib><title>Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers. Our developed "CIS-NAIST" device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus. The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we employed machine learning techniques for seizure classification and prediction. Using Long-Short Term Memory and Hidden Markov Models, we successfully classified seizure calcium activity and predicted seizure behavior based on the multi-layer imaging data. Taken together, our device can enable a minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.&amp;#xD.</description><subject>brain-implantable devices</subject><subject>calcium imaging</subject><subject>CMOS image sensor</subject><subject>hippocampus</subject><subject>seizure</subject><subject>temporal lobe epilepsy</subject><issn>1741-2560</issn><issn>1741-2552</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEtv1DAQgK0KRB9w7wn5Rg-Ejl9xciyrUioV9QCcLceZbb1KHGMnSNsLfx2vtuypSCN5NPpmxvMRcs7gE4OmuWRasoorxS9trxyII3JyKL065DUck9OcNwCC6RbekGPRtFwxaE_In8_J-lD5MQ42zLYbkAbEfsBq3kakq2_336kf7YMPD7TH394hxbDDMh2XYfbVYLeYaO9zRjf7KdBpTTP6pyUhdXZwfhlpvw129C5TH-j8iPTRxzg5O8YlvyWv13bI-O75PSM_v1z_WH2t7u5vbldXd5UrH52rrha8UbXUmkGtnOo6LXTTMClEi8pJ1fLWtqXIsa-d0sxKJZjUsoUS4MQZudjPjWn6tWCezeizw6FcjdOSjQDNGwDeiILCHnVpyjnh2sRUFKStYWB22s3Oq9k5NnvtpeX98_SlG7E_NPzzXIAPe8BP0WymJYVyrNkENJwZaUDWwLmJ_bqQH18g_7v5LwW8mK8</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Olorocisimo, Joshua Philippe</creator><creator>Ohta, Yasumi</creator><creator>Regonia, Paul R</creator><creator>Castillo, Virgil C G</creator><creator>Yoshimoto, Junichiro</creator><creator>Takehara, Hironari</creator><creator>Sasagawa, Kiyotaka</creator><creator>Ohta, Jun</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1320-2405</orcidid><orcidid>https://orcid.org/0000-0001-8194-9020</orcidid></search><sort><creationdate>20240801</creationdate><title>Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus</title><author>Olorocisimo, Joshua Philippe ; Ohta, Yasumi ; Regonia, Paul R ; Castillo, Virgil C G ; Yoshimoto, Junichiro ; Takehara, Hironari ; Sasagawa, Kiyotaka ; Ohta, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-b6328564771065c5bb7378814339e5c45929a9b732ed6c571a4531474904900c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brain-implantable devices</topic><topic>calcium imaging</topic><topic>CMOS image sensor</topic><topic>hippocampus</topic><topic>seizure</topic><topic>temporal lobe epilepsy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olorocisimo, Joshua Philippe</creatorcontrib><creatorcontrib>Ohta, Yasumi</creatorcontrib><creatorcontrib>Regonia, Paul R</creatorcontrib><creatorcontrib>Castillo, Virgil C G</creatorcontrib><creatorcontrib>Yoshimoto, Junichiro</creatorcontrib><creatorcontrib>Takehara, Hironari</creatorcontrib><creatorcontrib>Sasagawa, Kiyotaka</creatorcontrib><creatorcontrib>Ohta, Jun</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olorocisimo, Joshua Philippe</au><au>Ohta, Yasumi</au><au>Regonia, Paul R</au><au>Castillo, Virgil C G</au><au>Yoshimoto, Junichiro</au><au>Takehara, Hironari</au><au>Sasagawa, Kiyotaka</au><au>Ohta, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>46022</spage><pages>46022-</pages><issn>1741-2560</issn><issn>1741-2552</issn><eissn>1741-2552</eissn><coden>JNEOBH</coden><abstract>Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers. Our developed "CIS-NAIST" device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus. The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we employed machine learning techniques for seizure classification and prediction. Using Long-Short Term Memory and Hidden Markov Models, we successfully classified seizure calcium activity and predicted seizure behavior based on the multi-layer imaging data. Taken together, our device can enable a minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.&amp;#xD.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38925109</pmid><doi>10.1088/1741-2552/ad5c03</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1320-2405</orcidid><orcidid>https://orcid.org/0000-0001-8194-9020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2024-08, Vol.21 (4), p.46022
issn 1741-2560
1741-2552
1741-2552
language eng
recordid cdi_crossref_primary_10_1088_1741_2552_ad5c03
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects brain-implantable devices
calcium imaging
CMOS image sensor
hippocampus
seizure
temporal lobe epilepsy
title Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain-implantable%20needle-type%20CMOS%20imaging%20device%20enables%20multi-layer%20dissection%20of%20seizure%20calcium%20dynamics%20in%20the%20hippocampus&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Olorocisimo,%20Joshua%20Philippe&rft.date=2024-08-01&rft.volume=21&rft.issue=4&rft.spage=46022&rft.pages=46022-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEOBH&rft_id=info:doi/10.1088/1741-2552/ad5c03&rft_dat=%3Cproquest_cross%3E3072800283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072800283&rft_id=info:pmid/38925109&rfr_iscdi=true