Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate

Electronics over flexible substrates represent advantages of flexibility, portability, and low cost, and promising applications in areas of energy, information, defense science and medical service. In recent years, tremendous progress has been witnessed in developing flexible wearable devices that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2024-11
Hauptverfasser: Zhan, Suixin, Yuan, Shaokang, Bai, Yuming, Liu, Fu, Zhang, Bohan, Han, Weijia, Wang, Tao, Wang, Shengxiang, Zhou, Cai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Chinese physics B
container_volume
creator Zhan, Suixin
Yuan, Shaokang
Bai, Yuming
Liu, Fu
Zhang, Bohan
Han, Weijia
Wang, Tao
Wang, Shengxiang
Zhou, Cai
description Electronics over flexible substrates represent advantages of flexibility, portability, and low cost, and promising applications in areas of energy, information, defense science and medical service. In recent years, tremendous progress has been witnessed in developing flexible wearable devices that can be potentially massively deployed. Of extreme interest to intelligent wearable devices, such as sensors and storage cells, can be integrated by the flexible magnetoelectronic devices based on magnetic thin films. In this regard, magnetic property of FeNi thin films with different thicknesses grown on flexible graphene substrate are investigated at room temperature. The coercivity increases with increasing thickness of FeNi thin film, which can be attributed to the increase of grain size and decrease of surface roughness. Moreover, the thickness modulated magnetic property shows magnetic anisotropy shift increase with varying thickness of FeNi thin film by using measurements based on ferromagnetic resonance, and further enhance the resonance frequency. In addition, the resonance peak is quite stable after bending it ten cycles. The result is promising for design of future flexible magnetoelectronic devices.
doi_str_mv 10.1088/1674-1056/ad92fd
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1056_ad92fd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1674_1056_ad92fd</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1088_1674_1056_ad92fd3</originalsourceid><addsrcrecordid>eNqdj81uwjAQhK0KpIafe4_7AinrBNL0jIp66okjkmWSNTEktuV1RXn7ErXqA_Q0mhmN9I0QTxKfJdb1SlYv61ziplrp9rUw7YPICtzUeVmX64nI_upHMWM-I1YSizITh31nm4sj5rylQK4ll2DQJ0fJNhCiDxTTDbyBHX1YSJ11YGw_wCn6qwN_dz192WNP90SHjhwBfx45RZ1oIaZG90zLX50L3L3tt-95Ez1zJKNCtIOONyVRjS_UiKlGTPXzovzH5Bs9Y1Jc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate</title><source>IOP Publishing Journals</source><creator>Zhan, Suixin ; Yuan, Shaokang ; Bai, Yuming ; Liu, Fu ; Zhang, Bohan ; Han, Weijia ; Wang, Tao ; Wang, Shengxiang ; Zhou, Cai</creator><creatorcontrib>Zhan, Suixin ; Yuan, Shaokang ; Bai, Yuming ; Liu, Fu ; Zhang, Bohan ; Han, Weijia ; Wang, Tao ; Wang, Shengxiang ; Zhou, Cai</creatorcontrib><description>Electronics over flexible substrates represent advantages of flexibility, portability, and low cost, and promising applications in areas of energy, information, defense science and medical service. In recent years, tremendous progress has been witnessed in developing flexible wearable devices that can be potentially massively deployed. Of extreme interest to intelligent wearable devices, such as sensors and storage cells, can be integrated by the flexible magnetoelectronic devices based on magnetic thin films. In this regard, magnetic property of FeNi thin films with different thicknesses grown on flexible graphene substrate are investigated at room temperature. The coercivity increases with increasing thickness of FeNi thin film, which can be attributed to the increase of grain size and decrease of surface roughness. Moreover, the thickness modulated magnetic property shows magnetic anisotropy shift increase with varying thickness of FeNi thin film by using measurements based on ferromagnetic resonance, and further enhance the resonance frequency. In addition, the resonance peak is quite stable after bending it ten cycles. The result is promising for design of future flexible magnetoelectronic devices.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>DOI: 10.1088/1674-1056/ad92fd</identifier><language>eng</language><ispartof>Chinese physics B, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhan, Suixin</creatorcontrib><creatorcontrib>Yuan, Shaokang</creatorcontrib><creatorcontrib>Bai, Yuming</creatorcontrib><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Zhang, Bohan</creatorcontrib><creatorcontrib>Han, Weijia</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Shengxiang</creatorcontrib><creatorcontrib>Zhou, Cai</creatorcontrib><title>Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate</title><title>Chinese physics B</title><description>Electronics over flexible substrates represent advantages of flexibility, portability, and low cost, and promising applications in areas of energy, information, defense science and medical service. In recent years, tremendous progress has been witnessed in developing flexible wearable devices that can be potentially massively deployed. Of extreme interest to intelligent wearable devices, such as sensors and storage cells, can be integrated by the flexible magnetoelectronic devices based on magnetic thin films. In this regard, magnetic property of FeNi thin films with different thicknesses grown on flexible graphene substrate are investigated at room temperature. The coercivity increases with increasing thickness of FeNi thin film, which can be attributed to the increase of grain size and decrease of surface roughness. Moreover, the thickness modulated magnetic property shows magnetic anisotropy shift increase with varying thickness of FeNi thin film by using measurements based on ferromagnetic resonance, and further enhance the resonance frequency. In addition, the resonance peak is quite stable after bending it ten cycles. The result is promising for design of future flexible magnetoelectronic devices.</description><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqdj81uwjAQhK0KpIafe4_7AinrBNL0jIp66okjkmWSNTEktuV1RXn7ErXqA_Q0mhmN9I0QTxKfJdb1SlYv61ziplrp9rUw7YPICtzUeVmX64nI_upHMWM-I1YSizITh31nm4sj5rylQK4ll2DQJ0fJNhCiDxTTDbyBHX1YSJ11YGw_wCn6qwN_dz192WNP90SHjhwBfx45RZ1oIaZG90zLX50L3L3tt-95Ez1zJKNCtIOONyVRjS_UiKlGTPXzovzH5Bs9Y1Jc</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Zhan, Suixin</creator><creator>Yuan, Shaokang</creator><creator>Bai, Yuming</creator><creator>Liu, Fu</creator><creator>Zhang, Bohan</creator><creator>Han, Weijia</creator><creator>Wang, Tao</creator><creator>Wang, Shengxiang</creator><creator>Zhou, Cai</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241115</creationdate><title>Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate</title><author>Zhan, Suixin ; Yuan, Shaokang ; Bai, Yuming ; Liu, Fu ; Zhang, Bohan ; Han, Weijia ; Wang, Tao ; Wang, Shengxiang ; Zhou, Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1088_1674_1056_ad92fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Suixin</creatorcontrib><creatorcontrib>Yuan, Shaokang</creatorcontrib><creatorcontrib>Bai, Yuming</creatorcontrib><creatorcontrib>Liu, Fu</creatorcontrib><creatorcontrib>Zhang, Bohan</creatorcontrib><creatorcontrib>Han, Weijia</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Shengxiang</creatorcontrib><creatorcontrib>Zhou, Cai</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Suixin</au><au>Yuan, Shaokang</au><au>Bai, Yuming</au><au>Liu, Fu</au><au>Zhang, Bohan</au><au>Han, Weijia</au><au>Wang, Tao</au><au>Wang, Shengxiang</au><au>Zhou, Cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate</atitle><jtitle>Chinese physics B</jtitle><date>2024-11-15</date><risdate>2024</risdate><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>Electronics over flexible substrates represent advantages of flexibility, portability, and low cost, and promising applications in areas of energy, information, defense science and medical service. In recent years, tremendous progress has been witnessed in developing flexible wearable devices that can be potentially massively deployed. Of extreme interest to intelligent wearable devices, such as sensors and storage cells, can be integrated by the flexible magnetoelectronic devices based on magnetic thin films. In this regard, magnetic property of FeNi thin films with different thicknesses grown on flexible graphene substrate are investigated at room temperature. The coercivity increases with increasing thickness of FeNi thin film, which can be attributed to the increase of grain size and decrease of surface roughness. Moreover, the thickness modulated magnetic property shows magnetic anisotropy shift increase with varying thickness of FeNi thin film by using measurements based on ferromagnetic resonance, and further enhance the resonance frequency. In addition, the resonance peak is quite stable after bending it ten cycles. The result is promising for design of future flexible magnetoelectronic devices.</abstract><doi>10.1088/1674-1056/ad92fd</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2024-11
issn 1674-1056
2058-3834
language eng
recordid cdi_crossref_primary_10_1088_1674_1056_ad92fd
source IOP Publishing Journals
title Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness-dependent%20magnetic%20property%20of%20FeNi%20thin%20film%20grown%20on%20flexible%20graphene%20substrate&rft.jtitle=Chinese%20physics%20B&rft.au=Zhan,%20Suixin&rft.date=2024-11-15&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/ad92fd&rft_dat=%3Ccrossref%3E10_1088_1674_1056_ad92fd%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true