Floquet spectrum and universal dynamics of a periodically driven two-atom system

We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap. The interaction between the atoms is changed by varying the s-wave scattering length in two ways, the cosine and the square-wave mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2024-02, Vol.33 (2), p.26702-502
Hauptverfasser: Xie, Wenzhu, Zhou, Zhengqiang, Li, Xuan, Cui, Simiao, Sun, Mingyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap. The interaction between the atoms is changed by varying the s-wave scattering length in two ways, the cosine and the square-wave modulations. It is found that as the driving frequency increases, the Floquet spectrum exhibits two main features for both modulations, the accumulating and the spreading of the quasienergy levels, which further lead to different dynamical behaviors. The accumulation is associated with collective excitations and the persistent growth of the energy, while the spread indicates that the energy is bounded at all times. The initial scattering length, the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics. However, the corresponding relation between them is valid universally. Finally, we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels, which could guide preparation of a desired state in experiments.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/ad0623