Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach

The investigation of thermal transport is crucial to the thermal management of modern electronic devices. To obtain the thermal conductivity through solution of the Boltzmann transport equation, calculation of the anharmonic interatomic force constants has a high computational cost based on the curr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2023-04, Vol.32 (5), p.54402-14
Hauptverfasser: Qiu, Zhanjun, Hu, Yanxiao, Li, Ding, Hu, Tao, Xiao, Hong, Feng, Chunbao, Li, Dengfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 5
container_start_page 54402
container_title Chinese physics B
container_volume 32
creator Qiu, Zhanjun
Hu, Yanxiao
Li, Ding
Hu, Tao
Xiao, Hong
Feng, Chunbao
Li, Dengfeng
description The investigation of thermal transport is crucial to the thermal management of modern electronic devices. To obtain the thermal conductivity through solution of the Boltzmann transport equation, calculation of the anharmonic interatomic force constants has a high computational cost based on the current method of single-point density functional theory force calculation. The recent suggested machine learning interatomic potentials (MLIPs) method can avoid these huge computational demands. In this work, we study the thermal conductivity of two-dimensional MoS 2 -like hexagonal boron dichalcogenides (H-B 2 VI 2 ; VI = S, Se, Te) with a combination of MLIPs and the phonon Boltzmann transport equation. The room-temperature thermal conductivity of H-B 2 S 2 can reach up to 336 W⋅m −1 ⋅K −1 , obviously larger than that of H-B 2 Se 2 and H-B 2 Te 2 . This is mainly due to the difference in phonon group velocity. By substituting the different chalcogen elements in the second sublayer, H-B 2 VIVI ′ have lower thermal conductivity than H-B 2 VI 2 . The room-temperature thermal conductivity of B 2 STe is only 11% of that of H-B 2 S 2 . This can be explained by comparing phonon group velocity and phonon relaxation time. The MLIP method is proved to be an efficient method for studying the thermal conductivity of materials, and H-B 2 S 2 -based nanodevices have excellent thermal conduction.
doi_str_mv 10.1088/1674-1056/acb9e6
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1056_acb9e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202305002</wanfj_id><sourcerecordid>zgwl_e202305002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-33e4e5366da5524ea48c5c34ef9523011eb4266e4baec6ac276bbe8efeeb9a13</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxT2ARCnsjN5YCLXjxE1HVPElVWLpbl2cc-oqsSM7KAL-eVwFwcRyJz29d6f3I-SGs3vOqmrF5brIOCvlCnS9QXlGFr_SBbmM8ciY5CwXC_K1P2DooaNjABcHH0Y6BD9gGC1G6g0dJ581tkcXrXfJV_vgHW2sPkCnfYvONslogu8pUGNDHLMhWKft0CUdXEN70AfrkHYIwVnXUhjSiyRekXMDXcTrn70k-6fH_fYl2709v24fdpkWPB8zIbDAUkjZQFnmBUJR6VKLAs2mzAXjHOsilxKLGlBL0Pla1jVWaBDrDXCxJLfz2QmcAdeqo38PqUpUn-3UKcwTCFayNJeEzU4dfIwBjUpVeggfijN1IqtOGNUJo5rJpsjdHLF--Dv8r_0bbXWAeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach</title><source>Institute of Physics Journals</source><creator>Qiu, Zhanjun ; Hu, Yanxiao ; Li, Ding ; Hu, Tao ; Xiao, Hong ; Feng, Chunbao ; Li, Dengfeng</creator><creatorcontrib>Qiu, Zhanjun ; Hu, Yanxiao ; Li, Ding ; Hu, Tao ; Xiao, Hong ; Feng, Chunbao ; Li, Dengfeng</creatorcontrib><description>The investigation of thermal transport is crucial to the thermal management of modern electronic devices. To obtain the thermal conductivity through solution of the Boltzmann transport equation, calculation of the anharmonic interatomic force constants has a high computational cost based on the current method of single-point density functional theory force calculation. The recent suggested machine learning interatomic potentials (MLIPs) method can avoid these huge computational demands. In this work, we study the thermal conductivity of two-dimensional MoS 2 -like hexagonal boron dichalcogenides (H-B 2 VI 2 ; VI = S, Se, Te) with a combination of MLIPs and the phonon Boltzmann transport equation. The room-temperature thermal conductivity of H-B 2 S 2 can reach up to 336 W⋅m −1 ⋅K −1 , obviously larger than that of H-B 2 Se 2 and H-B 2 Te 2 . This is mainly due to the difference in phonon group velocity. By substituting the different chalcogen elements in the second sublayer, H-B 2 VIVI ′ have lower thermal conductivity than H-B 2 VI 2 . The room-temperature thermal conductivity of B 2 STe is only 11% of that of H-B 2 S 2 . This can be explained by comparing phonon group velocity and phonon relaxation time. The MLIP method is proved to be an efficient method for studying the thermal conductivity of materials, and H-B 2 S 2 -based nanodevices have excellent thermal conduction.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/acb9e6</identifier><language>eng</language><publisher>Chinese Physical Society and IOP Publishing Ltd</publisher><subject>boron dichalcogenides ; firstprinciples calculation ; machine learning interatomic potentials ; thermal conductivity</subject><ispartof>Chinese physics B, 2023-04, Vol.32 (5), p.54402-14</ispartof><rights>2023 Chinese Physical Society and IOP Publishing Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-33e4e5366da5524ea48c5c34ef9523011eb4266e4baec6ac276bbe8efeeb9a13</citedby><cites>FETCH-LOGICAL-c312t-33e4e5366da5524ea48c5c34ef9523011eb4266e4baec6ac276bbe8efeeb9a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1056/acb9e6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Qiu, Zhanjun</creatorcontrib><creatorcontrib>Hu, Yanxiao</creatorcontrib><creatorcontrib>Li, Ding</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Xiao, Hong</creatorcontrib><creatorcontrib>Feng, Chunbao</creatorcontrib><creatorcontrib>Li, Dengfeng</creatorcontrib><title>Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach</title><title>Chinese physics B</title><addtitle>Chin. Phys. B</addtitle><description>The investigation of thermal transport is crucial to the thermal management of modern electronic devices. To obtain the thermal conductivity through solution of the Boltzmann transport equation, calculation of the anharmonic interatomic force constants has a high computational cost based on the current method of single-point density functional theory force calculation. The recent suggested machine learning interatomic potentials (MLIPs) method can avoid these huge computational demands. In this work, we study the thermal conductivity of two-dimensional MoS 2 -like hexagonal boron dichalcogenides (H-B 2 VI 2 ; VI = S, Se, Te) with a combination of MLIPs and the phonon Boltzmann transport equation. The room-temperature thermal conductivity of H-B 2 S 2 can reach up to 336 W⋅m −1 ⋅K −1 , obviously larger than that of H-B 2 Se 2 and H-B 2 Te 2 . This is mainly due to the difference in phonon group velocity. By substituting the different chalcogen elements in the second sublayer, H-B 2 VIVI ′ have lower thermal conductivity than H-B 2 VI 2 . The room-temperature thermal conductivity of B 2 STe is only 11% of that of H-B 2 S 2 . This can be explained by comparing phonon group velocity and phonon relaxation time. The MLIP method is proved to be an efficient method for studying the thermal conductivity of materials, and H-B 2 S 2 -based nanodevices have excellent thermal conduction.</description><subject>boron dichalcogenides</subject><subject>firstprinciples calculation</subject><subject>machine learning interatomic potentials</subject><subject>thermal conductivity</subject><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxT2ARCnsjN5YCLXjxE1HVPElVWLpbl2cc-oqsSM7KAL-eVwFwcRyJz29d6f3I-SGs3vOqmrF5brIOCvlCnS9QXlGFr_SBbmM8ciY5CwXC_K1P2DooaNjABcHH0Y6BD9gGC1G6g0dJ581tkcXrXfJV_vgHW2sPkCnfYvONslogu8pUGNDHLMhWKft0CUdXEN70AfrkHYIwVnXUhjSiyRekXMDXcTrn70k-6fH_fYl2709v24fdpkWPB8zIbDAUkjZQFnmBUJR6VKLAs2mzAXjHOsilxKLGlBL0Pla1jVWaBDrDXCxJLfz2QmcAdeqo38PqUpUn-3UKcwTCFayNJeEzU4dfIwBjUpVeggfijN1IqtOGNUJo5rJpsjdHLF--Dv8r_0bbXWAeA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Qiu, Zhanjun</creator><creator>Hu, Yanxiao</creator><creator>Li, Ding</creator><creator>Hu, Tao</creator><creator>Xiao, Hong</creator><creator>Feng, Chunbao</creator><creator>Li, Dengfeng</creator><general>Chinese Physical Society and IOP Publishing Ltd</general><general>School of Science,Chongqing University of Posts and Telecommunications,Chongqing 400065,China%School of Science,Chongqing University of Posts and Telecommunications,Chongqing 400065,China</general><general>Institute for Advanced Sciences,Chongqing University of Posts and Telecommunications,Chongqing 400065,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230401</creationdate><title>Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach</title><author>Qiu, Zhanjun ; Hu, Yanxiao ; Li, Ding ; Hu, Tao ; Xiao, Hong ; Feng, Chunbao ; Li, Dengfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-33e4e5366da5524ea48c5c34ef9523011eb4266e4baec6ac276bbe8efeeb9a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>boron dichalcogenides</topic><topic>firstprinciples calculation</topic><topic>machine learning interatomic potentials</topic><topic>thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Zhanjun</creatorcontrib><creatorcontrib>Hu, Yanxiao</creatorcontrib><creatorcontrib>Li, Ding</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Xiao, Hong</creatorcontrib><creatorcontrib>Feng, Chunbao</creatorcontrib><creatorcontrib>Li, Dengfeng</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Zhanjun</au><au>Hu, Yanxiao</au><au>Li, Ding</au><au>Hu, Tao</au><au>Xiao, Hong</au><au>Feng, Chunbao</au><au>Li, Dengfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chin. Phys. B</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>32</volume><issue>5</issue><spage>54402</spage><epage>14</epage><pages>54402-14</pages><issn>1674-1056</issn><abstract>The investigation of thermal transport is crucial to the thermal management of modern electronic devices. To obtain the thermal conductivity through solution of the Boltzmann transport equation, calculation of the anharmonic interatomic force constants has a high computational cost based on the current method of single-point density functional theory force calculation. The recent suggested machine learning interatomic potentials (MLIPs) method can avoid these huge computational demands. In this work, we study the thermal conductivity of two-dimensional MoS 2 -like hexagonal boron dichalcogenides (H-B 2 VI 2 ; VI = S, Se, Te) with a combination of MLIPs and the phonon Boltzmann transport equation. The room-temperature thermal conductivity of H-B 2 S 2 can reach up to 336 W⋅m −1 ⋅K −1 , obviously larger than that of H-B 2 Se 2 and H-B 2 Te 2 . This is mainly due to the difference in phonon group velocity. By substituting the different chalcogen elements in the second sublayer, H-B 2 VIVI ′ have lower thermal conductivity than H-B 2 VI 2 . The room-temperature thermal conductivity of B 2 STe is only 11% of that of H-B 2 S 2 . This can be explained by comparing phonon group velocity and phonon relaxation time. The MLIP method is proved to be an efficient method for studying the thermal conductivity of materials, and H-B 2 S 2 -based nanodevices have excellent thermal conduction.</abstract><pub>Chinese Physical Society and IOP Publishing Ltd</pub><doi>10.1088/1674-1056/acb9e6</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2023-04, Vol.32 (5), p.54402-14
issn 1674-1056
language eng
recordid cdi_crossref_primary_10_1088_1674_1056_acb9e6
source Institute of Physics Journals
subjects boron dichalcogenides
firstprinciples calculation
machine learning interatomic potentials
thermal conductivity
title Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transport%20properties%20of%20two-dimensional%20boron%20dichalcogenides%20from%20a%20first-principles%20and%20machine%20learning%20approach&rft.jtitle=Chinese%20physics%20B&rft.au=Qiu,%20Zhanjun&rft.date=2023-04-01&rft.volume=32&rft.issue=5&rft.spage=54402&rft.epage=14&rft.pages=54402-14&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/acb9e6&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202305002%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202305002&rfr_iscdi=true